IN THIS ISSUE:
- NAMTS - Restoring I-Level Maintenance in the Fleet
- NAMTS and High Velocity Learning (HVL)
- MARMC Graduates 142 Maintenance Warriors
- HRMC Maintenance Warriors save over $40K
Welcome to the 45th Edition of “NAMTS News”

This newsletter contains information about the Navy Afloat Maintenance Training Strategy (NAMTS) Program. The purpose of this publication is to raise the level of awareness of and support for NAMTS among the Navy’s senior leadership, resource managers, maintenance personnel, and mentors by providing accurate information on current issues and events related to this important program.

You can access more information on the program, including its governing instructions, training requirements, links to related websites, FAQs, and archived newsletters at:

https://navsea.navy.deps.mil/FIELD/cnrmc/namts

NAMTS Training Sites

- East Coast Afloat
 - USS Dwight D. Eisenhower (CVN 69)
 - USS Abraham Lincoln (CVN 72)
 - USS Harry S. Truman (CVN 75)
 - USS George H. W. Bush (CVN 77)
 - USS Wasp (LHD 1)
 - USS Kearsarge (LHD 3)
 - USS Bataan (LHD 5)
 - USS Iwo Jima (LHD 7)

- Guam Afloat
 - USS Emory S. Land (AS 39)
 - USS Frank Cable (AS 40)

- West Coast Afloat
 - USS Nimitz (CVN 68)
 - USS Carl Vinson (CVN 70)
 - USS Theodore Roosevelt (CVN 71)
 - USS John C. Stennis (CVN 74)
 - USS Essex (LHD 2)
 - USS Boxer (LHD 4)
 - USS America (LHA 6)

- South Coast Afloat
 - USS Boxer (LHD 4)
 - USS America (LHA 6)

- Puget Sound Naval Shipyard and Intermediate Maintenance Facility Detachment San Diego (PNS DET SD)
- Naval Submarine Support Facility New London (NSSF)
- Mid-Atlantic Regional Maintenance Center (MARMC)
- Norfolk Naval Shipyard (NNSY)
- Southeast Regional Maintenance Center (SERMC)

On the Cover

USS Iwo Jima (LHD 7) with 24 Sailors enrolled in Afloat NAMTS and had 9 NAMTS Graduates in 2017.
ABSTRACT

Over the past two decades Sailor training has focused more on watch-standing and college education rather than Organizational (O-level) and Intermediate (I-level) maintenance. This has resulted in a loss of maintenance skills and subsequent reduction in ship material readiness and Battle Damage Repair capability.

In an effort to reverse this loss of maintenance and repair capability/proficiency, Commander, Navy Regional Maintenance Center (CNRMC) assumed responsibility for the Navy Afloat Maintenance Training Strategy (NAMTS) program. NAMTS is designed to produce Maintenance Warriors who are competent and confident in their ability to maintain their equipment/systems and if necessary perform the required intermediate level maintenance or emergent repairs to enable mission completion.

Decisions in the late 1990s to consolidate waterfront maintenance functions resulted in substantial divestiture of I-Level repair capabilities in fleet concentration areas with key readiness reports in 2008 – 2010 resulting in the decision to reinvest in organic I-Level capabilities. A driving factor in the decision to restore I-Level capabilities was to restore a path to technical competence for shipboard sailors.

CNRMC and the Regional Maintenance Centers (RMC) including Naval Shipyard Intermediate Maintenance Facilities (IMF) are collaborating on three I-Level “value streams” to make them the Navy’s largest “SEA” school:

1. Maintenance Competency Development
2. Material Readiness Support
3. Shop Production

As Sailors learn maintenance competencies through hands-on, real world, I-Level shop production (tracked by the NAMTS program), an increase in I-Level shop production results in an increase in maintenance competency development which in turn leads to an increase in ship material readiness. Sailors who complete NAMTS qualifications are expected to return to sea with increased competencies and confidence to support organic and Strike Force Intermediate Maintenance Activities (SFIMA) maintenance actions.

Background

In the 1990s, following the Cold War the Navy moved away from power projection and reduced ship numbers through attrition. Most of the afloat Destroyer and Submarine Tenders that provided I-level maintenance support for deployed ships and submarines were decommissioned. Many of the Shore Intermediate Maintenance Activities (SIMA) were consolidated or closed. By 2003, a major cultural change also occurred in the Navy with reduced or consolidated training and assessment programs as the Navy moved from training and developing Sailors as Operators and Maintainer’s to a focus on equipment operation and watch-standing.

While this model showed immediate cost savings, the unintended consequences were realized only a few years later. Those who have been around the Navy for a long time are very familiar with the infamous “Balisle Report” more formally known as the Fleet Review Panel of Surface Force Readiness, authored by Vice Admiral Phillip M. Balisle, 26 February 2010. The report concluded that the changes in manpower, manning, training, material readiness and a diminished chain of command oversight, caused unintended consequences that were detrimental to overall readiness. Reduced manning on ships and at shore support facilities placed unmanageable workloads on smaller, less trained crews; consequently, the ships were not maintained to required standards.

As a result, in October 2010, CNRMC, with strong support from the Surface Type Commanders and Fleet Maintenance Officers, was tasked with righting the I-Level maintenance ship through the use of the NAMTS program and hands-on production experience.

After analyzing the existing NAMTS program, reviewing Inspection and Survey (INSURV) reports, Afloat Training Group (ATG) reports, Naval Safety Center Surveys and directly liaising with Surface Type Commander staffs, it became clear that the Navy had significant challenges with maintenance knowledge and experience starting with shipboard Planned Maintenance System (PMS) to routine organizational level (O-level or TA4) work normally accomplished by ship’s force. The Navy needed a solution that provided not only short term successes but also long term, quantifiable, successes to ensure the continued fiscal support of I-Level maintenance and training programs.

As maintenance knowledge and ability decreased and maintenance requirements increased, Fleet Maintenance Officers initiated a TA4 Buy Down program where much of the backlog of TA4 work that Sailors should be expected to accomplish was contracted out to private industry. This effort
showed some success in improving readiness but was far too expensive and did not support organic self-sufficiency, a key tenant of the Balisle Report.

RESTORATION OF I-LEVEL MAINTENANCE AND TRAINING

In order to reverse course and restore I-Level maintenance capabilities and training, it was determined that 1,587 Sailors needed to be assigned to the RMCs; which included reestablishing South East Regional Maintenance Center (SERMC), Mayport, Fla., standing up Forward Deployed Regional Maintenance Center (FDRMC), Naples, Italy with Detachments in Rota, Spain and Bahrain and ensuring the Sailors assigned to Naval Shipyards in Norfolk, Va., Puget Sound, Wash., and Pearl Harbor, Hawaii, were assigned I-Level maintenance work again.

With the decommissioning of the SIMAs, and all but two of the Submarine Tenders, there was no longer standard I-Level Process Control Procedures (PCP) where Sailors used the same equipment and Quality Assurance (QA) standards they would use at sea. Most of the equipment that was standard at the SIMAs and on the Tenders was sent to Defense Reutilization and Marketing Office (DRMO). A recent review of shipboard repair equipment on big deck AMPHIBs and CVNs revealed that some of the original outfitted machine shop and repair equipment was removed or unused in lay-up. In order to standardize product lines at the RMCs and institute standard Formal Work Packages (FWP) and Controlled Work Packages (CWP), CNRMC worked with the Fleet Maintenance Officers to determine what I-Level work Sailors and civilians would be capable of performing in the RMCs. While the RMC I-Level includes Sailors, Government Civilians and Contractors, it is important for Sailors to be assigned work that enhances maintenance and repair skills they will use at sea. (The current list of capabilities is published in the Joint Fleet Maintenance Manual (JFMM) Vol. VI, Ch.35 Appendix A.)

ASSESSMENT

An assessment of the waterfront shows that the current I-Level capabilities are not well understood by the Surface Force and are not being fully utilized. As work continues to be screened and brokered to outside activities, Sailor opportunities to earn maintenance competencies is reduced further reducing organic self-repair toughness.

The evolving Surface Force environment and readiness requirements are presenting increased opportunities to load production shops while continuing to execute private sector shipyard work via Firm Fixed Price Contracts. Additionally, Small-crewed ships are driving up the demand for Sailors who possess the ability to maintain, troubleshoot and repair their onboard equipment.

In the past a lack of common practices and processes hampered the measurement of I-Level effectiveness. CNRMC is working to demonstrate that standard practices across the RMCs have a positive impact on surface force readiness and the development of Sailor maintenance competencies.

As Sailor numbers increased at the RMCs and Sailors started turning-wrenches, it was clear that very few had any actual hands-on maintenance and repair training or hands-on experience. Many of the enlisted maintenance schools had replaced hands-on training with computer-based training or eliminated the maintenance portion all together, thus creating a pool of “Operators” who now needed to be trained to “own” and

(Continued on page 5)
“maintain” their equipment through training received in the NAMTS program.

VALUE STREAMS

Developing maintenance warriors through I-level production creates value streams to include Maintenance Competency Development, Material Readiness Support and Shop Production.

RMC I-Level Shop Production

This value stream encompasses the RMC capabilities that have been restored and the associated NAMTS training as depicted below. CNRMC is working with TYCOM Port Engineers to assist RMCs to fully load their shops by becoming proactive in increasing Surface Force awareness of RMC capabilities and engaging ships to pull work into the RMC shops. A key component for this initiative is early coordination and active engagement between CNRMC, RMCs, Port Engineers and Ship Maintenance Managers. RMC schedules and work load forecasts have been hampered by a high rejection rate which is dominated by duplicate jobs or screening of jobs to shops that lack the required capability. This rejection rate complicates RMC ability to fully load shops and meet work schedules or customer needs and this is happening just as Firm Fixed Price Multiple Award Contract (MAC) Indefinite Delivery, Indefinite Quantity (IDIQ) contracting is starting to create additional opportunities for the RMCs to provide responsive maintenance to their customers.

Full production shop loading requires standardizing and streamlining procedures across all RMCs. Varied and limited shop space across regions, various management structures and internal processes, varied timekeeping policies and a heavy management burden of Special Duty Assigned Sailors are contributors to reduced production. CNRMC is addressing these contributors by means of Waterfront Execution Reviews (WER) by assigning value to the outputs of the value streams and ensuring these value streams complement and support the Joint Fleet Maintenance Manual principals.

RMC Maintenance Competency Development

NAMTS

The Maintenance Competency Development value stream hinges on the NAMTS program as it provides graduates with Navy Enlisted Classification (NEC) codes in order to aid in the distribution of Maintenance Warriors returning to sea. Sailors stationed at RMCs are provided with meaningful shore duty in fleet concentration areas and continue their professional education by expanding their maintenance competencies as they move from apprentice, to journeyman, and ultimately to master craftsman. An analysis of HM&E rated Sailors taking advancement exams showed that those who were involved in or graduated from a NAMTS program scored higher than their peers who lacked RMC provided hands-on training.

In order to increase maintenance competency development opportunities in 2015, CNRMC also rolled out Afloat NAMTS training to CVN, LHA, and LHD platforms to provide these ships, which have Intermediate Maintenance Activity (IMA) capabilities in their own right, access to the NAMTS program. The plan is to capitalize on the production work that these capable ships perform to train their Sailors. As these Sailors come from sea duty to an RMC their opportunity to become journeyman and master craftsmen is expedited as they are in a continual maintenance environment.

(Continued on page 6)
where they can increase their in-rate training and experience, get training on unique systems and continue stocking their “Maintenance Competency Toolbox”.

CNRMC and the NAMTS Maintenance Support Team are also working to provide NAMTS training to Sailors assigned to Pre-Commissioning Detachments/Units (PCD/PCU). Realizing there is some amount of available time at the PCD/PCU for NAMTS training the support team is coordinating with the RMCs and PCD/PCU to maximize any competency development opportunity available to them. Normally this training does not require temporary duty funds as the detachments are located in Fleet Concentration Areas and Sailors are trained at the local RMC where they can prepare a Sailor for their future assignment.

NAMTS is comprised of more than 340 unique maintenance competencies that can be earned in short amounts of time (2-10 days), affording the PCD/PCU Sailor the opportunity to earn their required NEC codes and several other competencies while awaiting formal school start dates or while awaiting orders. Earning additional competencies stocks the Sailor’s toolbox, creating a more valuable maintenance asset and improved organic repair toughness.

All competencies earned are recorded in the Sailor’s electronic training jacket and can be built upon by training at any RMC or Afloat NAMTS program.

To promote readiness across the fleet, CNRMC realizes almost all Sailors perform maintenance on valves and watertight closures. To support these Sailors, the NAMTS program opened both Valve Repair Technician and Watertight Closure Maintenance Technician training to all rates. Over the past two years Sailors in the Surface Operations, Supply, Medical, Administration and Aviation enlisted communities have enrolled and completed Job Qualification Requirements (JQR) and earned their Maintenance Warrior NECs. At a recent NAMTS graduation U.S. Fleet Forces Command, Fleet Maintenance Officer, RADM Whitney, challenged NAMTS Sailors to let their Chief Petty Officers and work center supervisors know they have the skills and want to do the work to put their maintenance warrior skills to the test.

CNRMC is leveraging emerging technologies such as the Training Health Management System to better define the investment in training maintenance competencies as well as measure the overall effectiveness of the program.

With many ships having a limited or small number of RMC-Served Sailors, there is not yet a “critical mass” of proficient maintainers afloat to move the ships material readiness “needle” in any perceptive manner. CNRMC is working with the enlisted distribution managers to fully man the ships with required NAMTS NECs and has been monitoring the material readiness, self-assessment ability and their organic repair performance.

Development of a Shipboard Organic Repair Capability Assist Team (SORCAT) program is also being initiated so the Navy can capture the NAMTS investment by revitalizing the “toughness”/self-sufficiency culture. SORCAT is a mobile assist team designed and deployed to review, correct deficiencies and document shipboard organic repair capability. The team will ensure shipboard repair capability (Personnel, Equipment, Material) is fully capable in supporting Strike Force components in the event of casualties.

Reestablishing a professional maintenance competency will place Maintenance Warriors in demand afloat by Commanding Officers who desire to increase their organic maintenance toughness and self-sufficiency. Creating a demand/value of the Maintenance Warrior will lead to an advancement system that rewards Sailors for earning maintenance competencies.

RMC Material Readiness Support

This value stream is comprised of Maintenance Assist Teams (MAT), Small-Crewed Hybrid MATs, Self-help opportunities, and Metrology and Calibration (METCAL) and Shipboard Instrumentation and Systems Calibration (SISCAL). Sailors helping Sailors, help themselves.

Maintenance Assist Teams

As 1-Level maintenance was floundering, so was the Shipboard PMS. To address the lack of PMS knowledge and accomplishment, Commander, Navy Surface Forces Atlantic requested CNRMC to work with his maintenance staff and
Mid-Atlantic Regional Maintenance Center (MARM) to provide a solution. The preferred solution was the formation of Maintenance Assist Teams (MAT) that exports 10 to 15 RMC Sailors and civilian subject matter experts, shop-to-ship, to work side-by-side with Ship’s Force and provide training while performing PMS and corrective maintenance on targeted high-failure equipment as identified by INSURV. The purpose of these MATs is to train Sailors while providing a comprehensive material assessment and maintenance review with a goal of increasing the level of readiness of the targeted systems. Through the use of NAMTS and MATs, unit self-sufficiency is promulgated to ships force by over-the-shoulder and hands-on learning.

Initially, the MAT program started with Valve MAT, focusing on Main and Secondary Drain systems; Deck MAT, focusing on Boat Davits, J-Bar Davits, Lifelines and topside ladders and Auxiliaries MAT, focusing on air-conditioning and refrigeration, hydraulic systems, anchor windlass and steering systems. Following the enormous success of these MATs the TYCOMs supported development of Electrical MAT; Gun MAT; Gas Turbine MAT; Rigid Inflatable Boat MAT; Watertight Door MAT; and Laundry and Galley MAT. Metrics continue to show that ships that take advantage of MATs within 6-months of INSURV are able to exceed their material readiness requirements.

MAT utilization has undergone a slight downward trend over the past two years and has declined to below CNRMC’s expected number of visit requests due to a lack of awareness by stakeholders. To address underutilization, CNRMC is working to establish a “Push vs. Pull” MAT schedule. RMCs are actively assisting ships in the scheduling of MATs and are evaluating the opportunity to sync MATs to Total Ship Readiness Assessment (TSRA) events. The goal is to make the full set of MATs available to each ship during their O-FRP cycle to further support unit self-sufficiency and toughness.

Small Crewed Hybrid MATs

CNRMC is working to develop Hybrid MATs. With small crew ships, the standard MAT execution model is a challenge to the ship. CNRMC has developed a Hybrid MAT model to account for difference in crew size. The proposed Hybrid MATs will contain RMC Sailor and civilian team members supporting several different MATs simultaneously. These Hybrid MATs can be tailored to specific ship classes based on equipment and systems. Hybrid MATs are of particular interest for 5th Fleet small crew ships and FDRMC Detachment Bahrain which has just stood up I-Level capabilities. Over the past year, CNRMC and the NAMTS Industrial Plant Equipment (IPE) team has installed and operationally tested numerous pieces of I-Level support equipment in their temporary warehouse facility. This I-Level facility is supporting the Mine Counter Measure / Patrol Costal ships and Navy Expeditionary Combat Command boats until a new facility can be built. The new building (P970) is a MILCON project which will support I-level production and provide limited support to deployed Littoral Combat Ships.

METCAL / SISCAL

METCAL and SISCAL are supported by the RMCs and RMC-trained Sailors. CNRMC is in the process of developing a NAMTS JQR to support the training requirements of the Shipboard Calibration Coordinator. This coordinator will be able to perform Level 1 calibration and also be familiar with the ships calibration requirements list (CRL) for Level 2 and Level 3 calibration requirements (i.e. how / what / who calibrates) in order to more efficiently and effectively support the SISCAL program.

Self-help opportunities

RMCs continue to provide self-help services where Sailors can bring items into the production workshops and get assistance and/or training on maintenance or repair. Common request for this service include valve repair, relief valve pop testing and Recovery Assist Secure and Traverse (RAST) Maintenance. Each RMC on every waterfront welcomes and encourages ships to leverage these resources.

CONCLUSION

CNRMC’s development of the I-Level Value Streams including: Maintenance Competency Development, Material Readiness Support and Shop Production, has set the framework to establish actionable and measurable mission, vision and goals for each of the streams. As these streams mature, a resurgence in at-sea maintenance competencies will be recognized and a corresponding increase in organic self-sufficiency is envisioned. By restoring hands on training through I-Level Production and Maintenance Assist Team (MAT) visits and a robust NAMTS Program, CNRMC is providing a needed solution to improve ship material readiness.
High-Velocity Learning Approach Coming to NAMTS

Matt Waters, Job Performance Associates, LLC and Dale Hirschman Commander, Navy Regional Maintenance Center

ABSTRACT

It’s common knowledge in the Navy that the current Chief of Naval Operations (CNO), Adm. John M. Richardson, is a strong proponent of high-velocity learning (HVL) and its importance to his Design for Maintaining Maritime Superiority, and for good reason. In his book “The High-Velocity Edge,” Steven Spear identifies HVL as a critical attribute of the most successful companies and organizations...those that are able to, in the words of Spear, “…create and sustain unassailable rates of broad-based, internally generated improvement, innovation, and invention…” The technical paper to follow will address how JPAs will bring HVL to the Navy Afloat Maintenance Training Strategy (NAMTS) program, as they have with other areas of the Department of Defense (DoD) maintenance community.

INTRODUCTION

Ship maintenance in the Navy is an area ripe with opportunity for change and innovation, particularly when it comes to training sailors to support a multitude of sophisticated systems. Advancing the knowledge of experienced sailors about shipboard maintenance is the mission of the NAMTS program, and soon NAMTS leadership will be adding multimedia learning to its on-the-job teaching approach through job performance aids (JPAs).

JPAs have been used extensively in the Navy’s aviation community to augment technical manuals (TMs) used for repairs. Because these tools are designed for use at a toolbox level – when work is being done – they offer a fitting solution for NAMTS students who have been receiving “over-the-shoulder” instruction on real-world maintenance projects for both ships and submarines. In keeping with HVL, the combination of the NAMTS training approach with JPAs are expected to:

- Make it possible to easily capture best-known practices by engaging the best of the best in sharing their experiential knowledge in a highly visual format
- Identify problems immediately, and provide a way to fix them both inside training materials and the TMs used to perform ship maintenance
- Turn site-specific (or localized) improvement discoveries into solutions that can be shared across the enterprise
- Provide a means to facilitate constant improvements that can keep pace with learned lessons as they are occurring
- Offer cost, readiness and safety improvements
- Enable a systematic approach to standardize better speed, quality and efficiency

THE FAILINGS OF CBT

Oftentimes people will equate the multimedia nature of JPAs with what they have seen in the past with computer-based training (CBT). Other than accessing information through a computer or other digital viewing device, there is little comparison between the two.

Reports and strategies produced for the DoD (the U.S. Navy, Air Force and Army in particular) have focused a spotlight on the need for change. Challenge areas outlined by The United States Army Learning Concept for 2015 (ALC 2015, June 2010), the Air Force’s On Learning: The Future of Air Force Education and Training (January 2008) and the NAVINSGEN Computer Based Training Study (March 2009) provide a critical look at the weaknesses associated with training, both in computer based courses and traditional schoolhouse education. A summary of CBT issues include:

Computer Based Training Failings

1. Based on outdated processes, equipment and procedures
2. Lack standardization for acquisition, design, quality, content and development
3. Content does not match actual work that needs to be performed
4. Little to no front-end analysis of needs
5. No robust life-cycle management
6. Non-existent metrics for training success at an operational level
7. Instructors have been replaced by facilitators in self-paced study
8. No “mentoring” exists for younger Service members
9. Changes have a typical 18-month development time
10. Much of the computer hardware/software resources are antiquated

(Continued on page 9)
BRIDGING THE GAP

Most job-related learning takes place, quite frankly, on the job. Only there can unique nuances and real-world challenges reveal themselves. Optimistic expectations from classroom training include retaining a debatable percentage of what was taught (estimates can range anywhere from 10 to 80 percent). However, it’s universally understood that the degree to which formal training translates to improved human performance is directly proportional to the time that passes between learning and actually doing.

A natural supposition would be that the loss of what’s been taught that occurs between the classroom and the work site can be mitigated in large part by shortening the gap between learning and doing. So, what if the gap could be removed entirely? What if training could be merged with TMs used to do a job? NAMTS is in the planning stages of using a unique blend of apprenticeship-like instruction, TMs and JPAs to train afloat sailors. Leveraging real intermediate-level maintenance work at its Regional Maintenance Centers (RMCs), the program will focus its HVL effort first on repairs related to watertight closures, ship valves and fiber optic cables.

The anticipated results of the NAMTS HVL effort go beyond better trained maintainers. It will also offer a tested strategy for capturing the best experiential knowledge inside a learning environment, and then making it available to fleet sailors outside the walls of the RMCs in the form of media-enhanced TMs.

To understand the full significance of this HVL effort by NAMTS, it’s important to consider the example it promises to set for a unified learning and working environment. At a time when military readiness is a top priority with key political figures and DoD leadership, the ability to train faster and better, while at the same time ensuring more reliable maintenance, could not come at a better time.

In his book, Spear identified four capabilities that HVL must have to be successful. These include 1) establishing a system of “dynamic discovery,” 2) being able to “swarm” problems to both solve and build new knowledge about them, 3) developing the means to share new knowledge throughout an organization, and 4) leadership that develops the ability of others in their organization to master the previous three capabilities on their own.

Success of JPA use is measured by:

- Reduction in improper maintenance,
- Improved safety and readiness,
- Reduction in costs associated with each of these
High-Velocity Learning Approach
Coming to NAMTS

(Continued from page 9)

The remainder of this paper will focus on how the NAMTS training strategy in combination with JPAs compares to the HVL capabilities outlined by Spear. While its impact to an organization will be limited to improving training and TMs – as opposed to an organization’s entire operating paradigm, as highlighted in Spear’s book – the NAMTS effort will have potential ramifications that are of no small significance.

Improvements to the equipment sustainment efforts of an entity as large as the DoD can easily measure into the billions of dollars in cost avoidance, especially when you consider that 60-70 percent of the cost associated with a weapon system is not in its purchase price, but rather maintaining it over its serviceable life. Even more important to the U.S. military is the dramatic positive impact this can have on mission readiness.

DYNAMIC DISCOVERY

The nature of dynamic discovery that will occur in the NAMTS training approach will be the first of its kind in the Navy. The reason this is so is because it marks an unparalleled opportunity for trainers to evaluate, discover and influence change to TMs while trainers have never been prevented in the past from submitting recommendations for changes to TMs, they also have never been required to ensure publications are correct prior to or while teaching a class.

The NAMTS mission is to provide classroom and hands-on training for ship maintenance, but with the introduction of JPAs, a completely new discipline and responsibility will be embraced. Navy specifications and standards governing the development of JPAs mandate that each and every procedure in a JPA must exactly match that found in its associated TM. Since JPAs are required to be a word-for-word reflection of the TMs on which they’re based, the new responsibility for the trainer will include making sure that not only are they training specific procedures by the book, but also that the book is correct.

While on the surface this forced discipline might seem like an unrealistic expectation, it is the fastest and most efficient method for bringing badly needed change to both the training and TM communities. By engaging an organization’s most experienced professionals (trainers, perhaps in coordination with other technical representatives) in the creation of accurate multimedia-based manuals (JPAs) dramatic change can happen over the course of just a few days of data collection and filming, as opposed to many months or years, as is now the case with changes to TMs.

The real strength in this approach is the discovery that takes place by simply slowing down the processes during the creation of a JPA. Oftentimes, inaccuracies that have been consciously or unconsciously overlooked for years finally get noticed and fixed.

THE “SWARM”

Since the production of JPAs has to include the expertise of both senior technicians (in this case, NAMTS trainers, along with, potentially, other technical representatives) and those responsible for the accuracy of TMs (generally the engineering community or manufacturers), those who are best able to fix a particular problem will be part of the project. This sort of accelerated “mini-swarm", if you will, is very focused on validating and verifying every step in a process.

Immediacy of change is perhaps the most compelling aspect of this approach. Oftentimes, JPAs can be filmed inside of a week. During that week, all of the TM inaccuracies are identified, subject matter experts are able to demonstrate and capture their experiential knowledge (in the form of Mentoring segments in each JPA), and needed changes to TMs are submitted along official channels.

There is a natural pessimism within military agencies when it comes to the time needed for TM revisions. Updates to TMs are historically a painfully slow, arduous process due in large part to the inadequacies of a text-based approach to clear understanding. This is not the case when an agency is determined to fix maintenance problems that are significantly impacting their operations, and have committed the resources to produce a JPA to address the issue. In essence, a spotlight is focused on the problem, accurate technical steps are defined, and urgency is placed on making sure the JPA and TM match. This results in a fast-track to change that is supported by all the technical experts needed for these revisions.

This sort of efficiency in the use of an organization’s resources makes the herculean task of fixing the issues that exist with
current technical publications and their disconnected relationship to the training community possible. By combining the right talent within an organization in a sparing way, moving beyond purely text-based instructions that encourage misinterpretation, and fielding a tool that is highly mobile (available inside the technical instructions being used on the job), modular and easy to update, the NAMTS effort is sure to establish an example that can be emulated easily by others.

SHARED KNOWLEDGE

Export is an extremely valuable aspect of the NAMTS initiative. While trainers and students will benefit greatly from having JPAs, it’s the potential impact outside the classroom that offers the greatest benefits.

Budgetary limitations will always limit the number of sailors who can attend NAMTS training. However, the changes to the TMs that will be a byproduct of this effort can be shared across the Navy’s surface and sub-surface communities. And, by opening itself to a feedback system with the fleet, NAMTS will also be able to gather the cumulative experience of maintainers who may never attend one of their classes, but whom have valuable insight to techniques or solutions that weren’t discovered during the initial JPA development.

The result will be a strategy that prevents best practices from having to be learned and then relearned (oftentimes this learning cycle is, not surprisingly, synched to duty station rotations every three or so years). This process will also help improve the accuracy and consistency of much of the work being done in the fleet by reducing the number of learned bad practices that have been developed out of necessity to address TM deficiencies.

SELF-RELIANCE

In Spear’s book, the fourth capability that organizations have to satisfy to qualify for HVL is leadership that can develop others in their organization to be self-reliant when it comes to dynamic discovery, swarming and knowledge sharing.

Within a military organization that might seem like a tall order, since the very nature of its structure is one that supports very specific and specialized areas of responsibility. But it’s actually this clearly defined delineation of responsibilities that will allow the NAMTS initiative to succeed. Looking carefully at the individual talent and collaboration needed to support this sort of training and TM merging, no individual or military entity will be asked to do something they are not already responsible for.

The real change will be a willingness to collaborate, which must be structured and supported by leadership. This is the only way the NAMTS effort will realize its full potential. A trainer must be encouraged to move out of his or her comfort zone of a classroom setting, and serve the dual role of “virtual” technical representative in the field.

Engineers will need to be available to spend time with senior technicians to identify and change the inaccuracies that plague the vast majority of TMs. The TM community, too, must be updated, in both its policies and regulations, to welcome the wave of multimedia-rich content that the Navy will need to drive readiness improvements through its maintenance community.

CONCLUSION

At the heart of the NAMTS initiative will be a strategy that has, to date, proven itself in parts. NAMTS has gotten visibility from key Navy leadership for the internal technical repair capabilities it’s contributed to. In the same fashion, JPAs have, over the past 13 years, significantly improved safety, cost and readiness in DoD activities by showing maintainers how to properly do their jobs.

The third and most challenging part of the equation will be the integration of this visual learning approach into the larger Navy maintenance community through its existing TMs. If the vision for a truly networked solution is to be realized, TMs will need to be transformed to better serve the DoD community as a whole.
MARMC Graduates 142 NAMTS Warriors

By Chris Wyatt, MARMC Public Affairs Specialist

Mid-Atlantic Regional Maintenance Center (MARMC) held its second quarter NAMTS graduation April 18, in Building CEP-86. MARMC Sailors enrolled in NAMTS receive on-the-job, rating-specific training, which can help them earn up to 14 different NECs.

The graduating class of 79 Sailors earned certificates in at least one of ten skill areas. NECs earned were shipfitting, heat exchanger repair technician, valve repair, rigger, outside electrical, outside machine, general shipboard welder / brazer and water tight enclosure.

MARMC Commanding Officer Capt. Daniel L. Lannamann and Commander, Naval Surface Force Atlantic Force Master Chief Jack Callison presented each Sailor their NEC certificate and offered them a congratulatory hand shake.

“Congratulations on your accomplishments,” said Lannamann. “By studying and earning these NECs, you take one more step to becoming the Subject Matter Experts in your particular skillset. Don’t just stop at one NEC, get as many as you can while you have the opportunity. The NECs you earn here can help you in your careers both in and out of the Navy. Thanks again for having me and continue the good work that you do.”

NAMTS training is available to Sailors on shore duty at RMCs, IMAs, shipyards, aboard tenders, as well as those stationed on ships undergoing extended maintenance availabilities.

MARMC is the largest NAMTS training site with 530 Sailors currently enrolled in the program. Additionally there are 334 Sailors onboard who have already graduated and earned their NAMTS NEC.

Rear Admiral Mark R. Whitney, Director Fleet Maintenance, U.S. Fleet Forces Command presented 63 MARMC Maintenance Warriors with their NAMTS Graduation certificates during a ceremony held on July 6, 2017.
By Mr. Brian Jolley, NAMTS Production Equipment Manager and Mr. Jim Gessner, East Coast Production Equipment Specialists

Naval Sea Systems Command (NAVSEA) 04X4 Headquarter Review

On May 1, 2017, the NAMTS Industrial Plant Equipment (IPE) team traveled to Washington, D.C. to participate in the 2017 Naval Sea Systems Command (NAVSEA) 04X4 Headquarters (HQ) review for the Ship Maintenance Improvement Program (SMIP). Leading the way for our presentation was Mr. Gary Evans, CNRMC’s I-Level Maintenance Production Manager, and Mr. Brian Jolley, NAMTS Production Equipment Manager. They were joined by West Coast NAMTS Production Equipment Specialist (PES) Mr. Jeff McNicholl and East Coast NAMTS PES Mr. James Gessner.

The IPE team presented seven projects for Fiscal Year (FY) 2018 funding consideration. Five projects were approved and funded; Southwest Regional Maintenance Center (SWRMC) Electronic Security System, SWRMC 5 Axis Vertical Machining Center, SWRMC Mobile Diving Life Support System, Southeast Regional Maintenance Center (SERMC) 6” Pipe Bender, and Mid-Atlantic Regional Maintenance Center (MARMC) 6” Pipe Bender. The SWRMC 6” Pipe Bender and Lathe Replacement projects were not approved and will be presented again at the FY-19 HQ review.

The process of procuring capital investment equipment is long and detailed. It starts with identifying the need for an RMC requirement that increases capabilities or replaces an antiquated asset. The team spends countless hours performing market research and working with shop leads to identify the right equipment specifications. Standardization across the entire CNRMC enterprise is also considered. When procuring equipment for RMCs with differing footprints and missions, enormous amounts of coordination is required to ensure that the prospective equipment can perform a wide range of functions. The Capital Asset Tracking System (CATS) is the vehicle used to facilitate project development, submittal, and approval. Economic analyses are performed on every project to forecast the return on investment and these numbers are validated one year after install.

In FY-16 the IPE team had one project approved and in FY-17 they had two projects approved. Returning from Washington, D.C. with five projects is a major win for this program and a strong statement to the RMCs about what the SMIP program can do to support their long term requirements. However, there is no time for a victory lap. The IPE team is now refining FY-19 HQ review requirements as well as preparing to install the five approved FY-18 projects. The NAMTS PES’s will continue working hard to support the RMCs equipment needs to keep our sailors trained and our ship’s fit to fight.

NAMTS Industrial Plant Equipment

Existing Pipe Bender at Mid-Atlantic Regional Maintenance Center (MARMC) to be replaced in FY-18.

Photo by: James Gessner

NAMTS IPE Team earned approval for 5 of the 7 proposed FY-18 projects totaling more than $4.8M!
USS George H. W. Bush (CVN 77), Chief Bo Miller (Command NAMTS JQR Coordinator) and his assistant Petty Officer First Class Joshua Spalding (NAMTS Testing Officer) lead the afloat program with 80 personnel enrolled across 13 NAMTS skills areas have the following JQRs implemented onboard: AC&R, Diesel Engine, Heat Exchanger, Hydraulic Repair, Inside Electrical, Inside Machinist, Outside Electrical, Pipefitter, Pump Repair, Rigger Weight Test, Shipfitter, Valve Repair and Welder / Brazer.

USS Wasp (LHD 1) is charging ahead to ensure its NAMTS program continues to develop Sailors after its initial program establishment. To date, the ship has five Sailors enrolled in two NAMTS JQRs, Inside Electrical Repair Technician and Pipefitter. Wasp is currently working to expand their training opportunities with enrollment of Sailors in the Rigger/Weight Tester, Watertight Closure Maintenance Technician, and Valve Repair Technician JQRs.

USS Bataan (LHD 5) produces consistently excellent results for their NAMTS program as their Command NAMTS Coordinator, Machinist Mate Chief David Jumper leads 28 Sailors who are enrolled in six JQR’s; Heat Exchanger, Inside Machinist, Interior Communications, Pipefitter, Pump Repair, Rigger Weight Test and Valve Repair. Bataan’s leadership and Sailors believe NAMTS is the solution to establishing a better maintenance program onboard and demonstrated their commitment as the ship enrolled an additional 21 Sailors in NAMTS JQR’s between March and July of 2017.

USS Iwo Jima (LHD 7) continues to be the East Coast standard setter for a successful NAMTS program. With 25 personnel enrolled in seven JQRs. All 25 enrollees continue to make steady progress towards completing their JQRs with seven personnel awaiting a final qualification board and eight personnel awaiting a post test.

USS Abraham Lincoln (CVN 72) has completed Phase III crew certification and sea trials and through the outstanding leadership of CDR Hannah Kriedwaldt (CHENG), LCDR B. Paul ‘Hendo’ Henderson (TRAINO) and MMCS (SW) Miguel Hutchinson (Command NAMTS JQR Coordinator) Lincoln has maintained a 100% participation rate. This achievement is no small task considering the ship was completing an extended overhaul and at times needed to focus all efforts towards completion of crew certification and sea trials. USS Abraham Lincoln has Sailors enrolled in Valve Repair and Inside Electrical Maintenance JQR’s, but intends to stand up other JQR’s and enroll additional personnel.

USS Kearsarge (LHD 3) training and engineering departments recognized NAMTS as an opportunity to personally develop their Sailors and have made it a top priority as they have maintained a 100% participation rate. While working up towards their next deployment Kearsarge has 36 personnel enrolled in ten JQRs that include, AC&R, Diesel Engine, Heat Exchanger, Hydraulics, Inside Electrical, Outside Electrical, Outside Machinist, Pump Repair, Valve Repair, and Watertight Closure.

617 Sailors are enrolled in the NAMTS Afloat Program
As USS Nimitz (CVN 68) nears its next Western Pacific deployment, MMC (SW) Dave Petersen (Command NAMTS JQR Coordinator) continues to pull out all stops to maintain Nimitz’s positive focus toward the NAMTS program. This focus will be challenged as the Nimitz transitions back into a rigorous OPTEMPO of daily routines mixed with flight operations. Nimitz continues to work with Ms. Sandra Hinz, Afloat NAMTS Coordinator Bremerton and Intermediate Maintenance Facility (IMF) Bangor’s Regional NAMTS Coordinator, to benefit both commands with training provided for the Outside Machinist JQR. Additionally, both commands provide training for their Hydraulics Repair and Outside Electrical candidates offering each command a clear path of self-sustainability in maintaining and repairing equipment associated with these three NAMTS areas.

The ship currently has 79 Sailors enrolled in the twelve NAMTS skill areas which include, Diesel Engine Repair, General Shipboard Welder / Brazer, Hydraulics Repair, Inside Machinist, Interior Communication, Outside Electrical Repair, Outside Machinist, Pump Repair, Rigger / Weight Tester, Shipfitter, Valve Repair, and Watertight Closures Maintenance Technician. Although the current focus is preparing for her next deployment, the ship strives to keep the crown as the first Navy Afloat Training Activity to have NAMTS implemented onboard.

As with USS Nimitz, the Stennis is coordinating with Ms. Sandra Hinz, Afloat NAMTS Coordinator Bremerton and IMF Bangor to support the completion of the Outside Machinist JQR. This coordination allows Sailors, stationed in the Bangor/Bremerton area the ability to participate in the Outside Machinist JQR and will provide a broader base of self-sustainability in the maintenance and repair of outside machinery for their individual commands.

As the aircraft carrier USS Theodore Roosevelt (CVN 71) completes its current maintenance availability, MM1 (SW) Christopher Willard (Command NAMTS JQR Coordinator) and MM2 (SW) Rickie Carter (Assistant Command NAMTS JQR Coordinator) strive to maintain a positive focus on the NAMTS program. Both Willard and Carter were up to the challenge and have maintained the highest of standards for an afloat NAMTS program. Roosevelt has graduated five (5) Maintenance Warriors who earned their NAMTS NECs all while completing an arduous Planned Incremental Availability (PIA). Roosevelt has four warriors qualified as Outside Electrical Repair technicians and one warrior qualify as a Pump Repair technician. Willard and Carter continue to encourage the 35 current enrollees to complete the assigned tasks and earn an NEC like their predecessors.

Roosevelt extends a warm congratulations to MM1 (SW/AW) Hannah Myers for being the first Sailor onboard to complete the Pump Repair JQR. She will now take this experience with her as she transitions to Code 900 at Southwest Regional Maintenance Center (SWRMC).

As with some training programs, progress can suffer during a turnover between Command coordinators. However, onboard the USS John C. Stennis (CVN 71), the dedication and hard work of Ensign Brett Enlow (Command NAMTS JQR Coordinator) and MR1 (SW/AW) Adam Ferenbach (Assistant Command NAMTS JQR Coordinator) the NAMTS program has experienced minimal disruptions through a turnover of leadership while going through its extended yard period.

Stennis has 86 Sailors currently enrolled in eight NAMTS skill areas and is planning for the implementation of the Interior Communications JQR in the near future. Stennis has the most participants of any afloat NAMTS program on the West Coast and the main focus is to have each of their enrolled Sailors complete their qualification, and earn an NEC, prior to completion of the current availability.

As with USS Nimitz, the Stennis is coordinating with Ms. Sandra Hinz, Afloat NAMTS Coordinator Bremerton and IMF Bangor to support the completion of the Outside Machinist JQR. This coordination allows Sailors, stationed in the Bangor/Bremerton area the ability to participate in the Outside Machinist JQR and will provide a broader base of self-sustainability in the maintenance and repair of outside machinery for their individual commands.

During extended maintenance availabilities, some Sailors can become unmotivated or disheartened. However, the NAMTS program has taken off for the crew of USS Boxer (LHD 4) since implementation and 26 Sailors are taking full advantage of the opportunities available to them. While maintaining the program with the initial eleven (11) candidates, the ship recently enrolled an additional 15 Sailors into the program.

They recently implemented three additional JQRs; General Shipboard Welder / Brazer, Inside Machinist, and Interior Communications. With these new additions implemented, the total amount of JQRs onboard stands at five.

With all of the evolutions associated with a Planned Incremental Availability (PIA), Boxer has maintained their diligent pursuit of this program. MMCS (SW/AW) Shawn Seabron (Command NAMTS JQR Coordinator) and MRC (SW) Matthew Travis (Assistant Command NAMTS JQR Coordinator) continue to motivate their Sailors and encourage them to complete tasks associated with their work schedule.
After successful completion of an extended overhaul USS Harry S. Truman (CVN 75) led by Master Chief Marte (Top Snipe) and Chief Minnifield (the Command NAMTS JQR Coordinator) entered into an arduous shipyard availability at Norfolk Naval Shipyard. However this has not stopped the Truman from taking advantage of the training opportunity for its Sailors by enrolling three personnel in the NAMTS Valve JQR in February when the ship was established as a NAMTS Afloat Training Activity. In addition the ship now has a plan to stand up training in three other JQRs to include: Watertight Door, Inside Machinist and Outside Machinist Maintenance JQRs.

Chief Minnifield says “I wish we would have taken advantage of the training available here at the shipyard with the Carrier Maintenance Assistance Team from day one, the training our Sailors get from the CMAT Valve Barge is invaluable”. Truman includes NAMTS as a standard part of their Command Indocritnination program and actively seek out interested Sailors who wish to improve in their rating knowledge and maintenance competencies.

Recent CO’s Survey Response:

“My NAMTS NEC Holders are my top maintainers / engineers. I am very pleased with their level of knowledge and technical expertise.”

CAPT Kevin J. Parker, USS John P. Murtha (LPD-26)
Established as a NATA in December 2016 USS Dwight D. Eisenhower (CVN 69) is led by Master Chief Joseph (Top Snipe) and MMC Valenzuela (Command NAMTS Job Qualifications Coordinator). They have enrolled 22 Sailors in seven NAMTS JQRs which include, Air Conditioning and Refrigeration, Heat Exchanger, Inside Machinist, Outside Electrical, Pipefitter, Shipfitter and Valve Repair. Adding to their training the Eisenhower has now implemented the Watertight Door Maintenance and Outside Machinist JQRs. Eisenhower’s Sailors have maintained 100% weekly participation in NAMTS Qualifications since establishment as a NATA.

USS Carl Vinson (CVN 70), has 49 Sailors enrolled in the NAMTS program and recently returned from a western Pacific deployment. Sailors are enrolled in ten NAMTS skill areas that include: Air Conditioning and Refrigeration, Heat Exchanger Repair, Hydraulics Repair, Outside Electrical Repair, Outside Machinist, Pipefitter, Pump Repair, Shipfitter, Valve Repair and Watertight Door Maintenance.

All Hands publishes a NAMTS video.

Sailors from USS Frank Cable (AS 40) traveled to Sasebo, Japan to work onboard USS Germantown (LSD 42) and earned qualifications toward their NAMTS NECs.

Check out the Video at this link: http://www.navy.mil/viewLdrVideo.asp?id=1001&v=22477
SS Emory S. Land (AS 39) awarded its first NAMTS NEC to HT2 (SW) Michael Willson in November 2016. This is quite a milestone for AS-39’s NAMTS team which was established in April 2016. In his exit questionnaire, Petty Officer Willson responded to the question; Do you believe that NAMTS training would prove beneficial in preparing for Navy-Wide Advancement Exams? Why or why not? He stated “When studying for the shipfitter test, I learned about things that I never knew before, and I believe, helped me make first class”. Great start for Emory S. Land.

Director for Fleet Maintenance U.S. Pacific Fleet visits USS Emory S. Land

Polaris Point, Guam. Rear Admiral Stephen F. Williamson, Director for Fleet Maintenance U.S. Pacific Fleet, visited USS Emory S. Land (AS 39) and toured the newly remodeled Emergent Refit Facility (ERF), May 16, 2017.

During the tour of the ERF, Williamson took the time to award 4 sailors their NAMTS NEC’s and highlight that their effort goes beyond maintenance support to the submarine community.

RDML Williamson challenged the sailors to take charge and pride in their work, “Be the frontline craftsman of repairing our equipment and not the guy to call in a tech rep on a moment’s notice. Let your Chief know that with a little time you can figure out the problem.”

"It was very interesting to talk to Admiral Williamson and listen to what he had to say," said Machinery Repairman Second Class Tyler Knopsnyder. "To learn about the direction that repair maintenance and the U.S. Navy is heading was an eye opening experience."

145 Sailors Stationed In Guam are Enrolled in the NAMTS Program

USS Frank Cable & USS Emory S. Land offer NAMTS training in 14 Job Qualification Requirements

Rear Admiral Williamson addresses the sailors of USS Frank Cable (AS 40) and USS Emory S. Land (AS 39) during recent Guam visit. (Photo by: MC3 (SW) Timmy Wakefield)
Classroom training is the most traditional form of lifelong learning. However, USS Frank Cable (AS 40) and USS Emory S. Land (AS 39) have utilized the implementation of the NAMTS program to create a workplace model that links hands on training from one command to the other. As such, it offers the advantage of familiarity between the sailors and the opportunity for junior sailors to communicate readily and face-to-face with experienced sailors of the other command.

Since the Emory S. Land has been homeported at Polaris Point, Guam it has an abundance of junior sailors (60%) assigned to their Inside Machine shop with little senior leadership assigned. As the Lead Maintenance Activity (LMA) this caused the majority of the senior sailors onboard to concentrate on the maintenance of the attended units with little time for training.

During the USS Frank Cable’s Dry-dock Planned Maintenance Availability (DPMA) several senior Machinery Repairman (MR) were sent TAD to USS Emory S. Land to assist with the workload and train the junior sailors. Two of the Frank Cable’s sailors recently earned their NAMTS NEC (4406) and are excited about teaching what they learned to their counterparts. MR2 (SW) Thomas Evans stated “I truly enjoy the hands on approach and knowing the same training we received on Frank Cable is now being balanced with the sailors of the Emory S. Land”.

As the NAMTS program grows and evolves and despite the differences in abilities from command to command and shop to shop, it is possible to integrate training tools in ways that impact engagement and learning for all sailors. If, like many commands, you have obstacles in terms of available equipment or support, we've got two great resources integrating here in Guam.
What happens when pump motor bearings are excessively worn?

When a potable water pump started leaking from the mechanical seal during a recent underway for one of the ships stationed at Naval Station Everett, Wash., the potable water pump and motor from a ship were sent to Puget Sound Naval Shipyard and Intermediate Maintenance Facility, Detachment Everett, for inspection and overhaul. The electric motor for the potable water pump went to the Sailors in the outside electrical shop and the physical pump was sent to the pump repair shop.

During the inspection of the pump motor by EM2 (SW/AW) Michael Sistos and EM2 (SW) Mark Viloria of the Outside Electrical shop, they observed that the bearings supporting the rotor appeared worn. Through further inspection, they saw that the worn bearings had caused excessive play in the rotor shaft, allowing the shaft to have disproportionate thrust upon start-up. After Sisto and Viloria measured the clearances, under the supervision of Mr. Dan Hines, Outside Electrical Shop Subject Matter Expert (SME), the motor for the potable water pump was sent for rewinding and the application of laminating material with all final measurements being verified by the Precision Measurement Training Level A, EM1(SW) Jenneselle.

Due to the skills learned through the NAMTS program, the motor was able to be correctly measured and inspected to find needed repairs. This valuable training made possible the avoidance of the costly replacement of the motor and pump. The Pump Repair shop found a faulty mechanical seal during an inspection of the potable water pump, as the failed component and the root cause of the potable water pump problem.

Pump Repair Shop Capabilities at PSNS and IMF Detachment Everett

The pump repair shop at PSNS and IMF Detachment Everett, supervised by MMC (SW/AW) Damon Moore and Darren Axtell, (SME) repaired the chill water pump for USS Shoup (DDG 86). Repair of the chill water pump enabled full, proper cooling water flow to systems essential to the Combat Systems readiness. The repair, led by MM1(SW) Bryan Brys, was performed by Parrish. When the pump shop receives a pump to be overhauled, the shop disassembles the pump with the exception of removing the pump impeller from the shaft. The shaft is then run out to ensure balance. If pump balancing is required, the shaft is sent to be rebalanced to within specifications. Prior to reinstalling the shaft, new sleeves and bearings are assembled onto the shaft along with a visual inspection of the impeller for any defects. During the inspection, performed upon disassembly, Parrish, using his knowledge gained from NAMTS pump repair, discovered the mechanical seals needed replacing. After replacing the mechanical seals, making a new gasket and re-assembling the pump, the chill water pump was delivered to the ship and re-installed for equipment cooling and air conditioning for the crew.
Hawaii Regional Maintenance Center (HRMC) Fleet Maintenance Surface (FMR) project added another tool to its toolbox this past week. With short notice and only one day to complete the job, the FMR Maintenance Assist Team (MAT), led by MMC(SW) Steven Davis and HTC(SW) Harry Herradura, swiftly and professionally mobilized and executed a water lance cleaning of the NR 4 Air Conditioning (A/C) Plant Condenser onboard USS Sterett (DDG 104). Four of the eight team members are NAMTS Air Conditioning & Refrigeration 4228 Navy Enlisted Classification (NEC) graduates and three hold other NAMTS NECs.

The San Diego-based ship is currently on deployment to execute national tasking in the 7th Fleet area of operations (AOR). With three A/C plants out of commission when the ship arrived, it was critical that FMR respond quickly. FMR conducted the maintenance check, which revealed the heavily clogged condenser on NR 4 A/C plant, and removed the marine growth, restoring the A/C unit to full operation. With the short in-port period, the Port Engineer had American Systems Engineering Corporation (AMSEC) chemically clean NR 1A A/C unit at the same time. The Sterett got underway Friday morning with all four of its A/C units fully operational. FMR can be proud because the work they completed allowed the ship to continue on her deployment, fully mission capable.

During future Auxiliary Maintenance Assist Team (AMAT) visits on Pearl Harbor home ported ships, FMR will conduct preventive maintenance checks on A/C systems and clean condensers with its new water lance equipment. With each condenser cleaned, FMR will be increasing the efficiency of the A/C plants on the ships, extending their service life and contributing directly to warfighting readiness while saving the Navy more than $40,000 per condenser.

HRMC implemented Outside Electrical training in January 2017. EMC (SW) Marc Elago and seven others are the first enrollees since 2013. Elago has been instrumental in working with civilian leadership to access equipment usage and perform hands-on electrical repairs, such as motor rewinding, troubleshooting various electrical components, cable inspections, and switchboard cleaning. Over the last five months, this group has worked on spotlight and cable repairs, and conducted cableway inspections.

The Diesel Engine Shop is in the process of altering the engine mounts and components for a non-standard diesel that was configured for trucks rather than rigid-hulled inflatable boats (RHIBs). The Sailors are salvaging belt pulleys from a damaged engine in order to install the replacement Cummins 5.9 QSB engine. Other modifications needed include: repair of the internal oil pickup line, recalibration of the Electronic Control Module (ECM) (to change the rated horsepower from 380 to 230 horsepower), and addressing 12-volt to 24-volt changes (alternator, starter, fuel pump, and possibly the ECM if it cannot be recalibrated). Mounts will be manufactured for the damaged engine to be used as a training mock-up.

The Gas Turbine Repair shop has been full throttle for the past few weeks, starting with a high-visibility repair led by GSCS (SW) Colt Schad (NAMTS NEC 4140) onboard Taiwan Navy frigate (PFG-1112) Ming-Chuan (former USS Taylor FFG 50). Our Sailors conducted repairs on the LM2500 1A Gas Turbine Main (GTM). They effected repairs to the high pressure compressor consisting of a blade blend / replacement on stages 3-16, which took seven days to complete. They also have been busy onboard the USS Port Royal (CG 73), completing 1B and 2B GTM Power Turbine Inspection, the Turbine mid-frame liner inspection, and the replacement of the NR 1 Gas Turbine Generator high speed pinion bearings and the Power Take-off Shaft and housing.
Mid-Atlantic Regional Maintenance Center (MARMC) NAMTS Command Coordinator, Chief Machinery Repairman Phillip Diaz; MARMC Regional NAMTS Coordinator, Jason Nofsker and respective skill area coordinators implemented practical applications within the oral board portion of the NAMTS qualification process. The addition of practical application to the qualifying process is based on an original concept developed for the NAMTS Rigger/Weight Tester JQR by MARMC Rigging/Weight Testing Supervisor David Lucas.

Lucas, along with Diaz, afforded other qualifiers and skill area coordinators the opportunity to review the Rigger/Weight Tester oral board and practical method. Skill area coordinators from Outside Electrical, Outside Machine, and Watertight Closure JQRs took the opportunity to determine if implementing the concept into their respective oral board process was feasible.

The concept of a practical application within the oral board process harkens back to tried and tested methods of determining the overall knowledge a Sailor obtains and retains during a qualification process. “By incorporating the handling of the tools identified within the JQR during the oral board process, the confidence level among the Sailors going through the boarding process has increased dramatically,” said Diaz.

The MARMC NAMTS program continues to seek and implement innovative methods of improving the overall training Sailors receive while completing their JQRs. This command-wide dedication to quality training by MARMC ensures that the NAMTS program provides the fleet with powerfully forged maintenance warriors.
It takes a lot of time and patience to become proficient in any mechanical rating; it requires skill, patience, determination and the willingness to learn. The NAMTS JQR outlines the necessary skills and processes needed to complete the program, and the Sailors in Code 831 have taken on the challenge. They have developed training lectures, demonstrations and hands-on practice in order to complete the JQR successfully and retain the knowledge not only to get through the program but to help with advancement exams and to develop the next generation of HTs. This is the cornerstone of the NAMTS program in order to provide the fleet with better trained Sailors that can train the Sailors in their charge.

HT1 (SW) Adam Welchel has personally taken on the training and development of the Sailors within Hull Division Code 831, to make sure they have every opportunity to learn the art of proper layout, calculations, measurements, alignment and execution. This has increased their knowledge and confidence, which in turn saves time and money in man-hours and materials, thus reducing rework and increasing production.

Welchel meticulously explains the process, demonstrates the steps and then has the trainee perform the calculation and execute the procedure to validate what they have learned. The trainee then has the opportunity to explain what he/she has learned to prove they have retained the information and can train another to continue the learning process.

This method ensures the trainee not only has the ability to perform the necessary actions but has a clear understanding of the process as a whole and can share that knowledge. This process seems to really resonate with the Sailors and the pride they show when they complete the task correctly is very evident. “The knowledge gained from HT1(SW) Welchel on the setup and procedure of pipe bending has greatly improved my in-rate knowledge. This knowledge will not only benefit me now while working at PACNORWEST IMF BANGOR, but also in the fleet where I will be able to train other Sailors on pipe bending,” said HT2 (SW/AW) Jonathon Coard.

“I think the NAMTS program is a great way to stay active in the career advancement of our junior Sailors,” said Welchel. “It provides us as leaders an opportunity to spend quality face time with our Sailors. We can use the time to better understand how our Navy is growing and evolving. It also allows us to have a direct impact on the future of the fleet. The Sailors we train today will train the Sailors of tomorrow. It opens a line of communication for the junior Sailors to have input into the evolvement of their rates. It is also a great opportunity for leaders and subject matter experts to deepen their knowledge of their rating. It allows an environment for us to explore the broad scope of our rating beyond what we do as an everyday job. As a trainer for the Shipfitter, Pipefitter, and Watertight Door JQRs, I have refreshed and renewed my passion of the HT rating. I have performed tasks that I have not had the opportunity to do in years!” he added.

The Sailor training Sailor model keeps everyone engaged in the process and provides an opportunity for the trainer to also learn from the trainee. Taking pride in their rating knowledge

(Continued on page 24)
and ability, and making the time to share what they have learned with each other leads to the development of the next generation of Sailors ensuring strong, competent and confident Sailors will return to the fleet.

On March 8, 2017 PSNS and IMF Bangor held a NAMTS graduation ceremony. This is a regular occurrence at the command; typically a ceremony is held once a quarter to celebrate Sailors that have completed the requirements to earn a NAMTS NEC, but during this particular ceremony the NAMTS team had the pleasure of recognizing MMN1 (SS) Erik Russell. Petty Officer Russell is the first nuclear qualified submarine Sailor at PSNS & IMF to successfully complete the NAMTS program. He voluntarily enrolled into the Valve Repair program while assigned to Code 832, Shop 31D where he worked side by side with the civilians and other military members of the shop to learn valve repair and maintenance.

The program allows the candidate to progress at their own pace so someone with previous experience may progress quickly and someone with little to no experience has time to learn and become proficient at a skill, building confidence and knowledge.

Petty Officer Russell stated, “I chose to participate in the NAMTS program voluntarily to strengthen my technical knowledge and to help assist the Sailors required to participate in the NAMTS program. This program will have a great impact in Sailors being able to do their jobs better. I encourage all Sailors who are not required to participate to enroll.”

The NAMTS program is ever evolving and opening up the program to submarine and nuclear qualified personnel adds another avenue for Sailors who want to increase their technical knowledge and break out from the crowd to do just that.
SWRMC Supports
USS Wayne E. Meyer (DDG 108)

By Doug Scholl SWRMC Regional NAMTS Coordinator

SWRMC Code 932 gets USS Wayne E. Meyer (DDG 108) on deployment, on time!

During Wayne E. Meyer’s pre-deployment Gas Turbine Inspection, Marine Gas Turbine Inspectors (MGTI) discovered NR 3 Gas Turbine Generator (GTG) Combustion Liner crossover tubes on cans NR 1, NR 2, and NR 6 had cracks beyond serviceable limits. Ships force received a maximum of 500 hours of operation time order and recommendation to conduct repairs during next Continuous Maintenance Availability Visit (CMAV) prior to deployment.

SWRMC Gas Turbine Shop, Code 932, received an Emergent work request, and upon receipt of expedited material, work commenced on the Allison 501 K-34 Gas Turbine Generator.

A Team of eight NAMTS enrolled technicians disassembled the combustion section, and removed the combustion liners. Serving as Team leader GSM2 Lopez inspected the Turbine Inlet Casing where the combustion liners saddled into place, and discovered wear on the vane case struts. GSCS Toten, Code 932 Gas Turbine Shop SME, inspected the vane case and recommended to MGTI, Code 231, replacing the engine due excessive strut wear in the Turbine Inlet Case.

Code 932, is one of the premier NAMTS Work Centers located within SWRMC, achieving 98% of assigned personnel gaining their NAMTS 4140 NEC during their tour of duty.

This is possible due to the full support of the Chain of Command and Engine Product Family manager. Code 932 critically review, repair work packages and ensures they identify their Sailors NAMTS training requirements, pair them with a qualified Sailor and train them while executing the work package.

When reviewing NAMTS requirements and matching production work to needed qualifications becomes routine, achieving high a number of qualified technicians to meet the navy’s maintenance capabilities is ensured.

GSM2 Lopez, nearing completion of his NAMTS JQR, just needed to lead an engine change out and was assigned as team lead for this high priority, high profile repair. GSM2 Lopez took fellow Code 932 sailors; GSM2 Askew, GSM2 Cannon, GSM2 Morrocho, GSM2 Alexander, GSM2 Perea, GSM2 Uddin, GSM2 McCray, GSEFN Rougier, and NAMTS NEC holders GSM1 Holmquist and GSE1 Manesses as the command NAMTS signers to observe and offer advice as needed.

GSM2 Lopez and his team were able to complete the GTG change out in eight days, ensuring USS Wayne E. Meyer could meet her operational commitment joining the Carl Vinson Carrier Strike Group deploying to the Third Fleet.

Commander Vincent Fortson, Commanding Officer, USS Wayne E. Mayer sent the following message, “Your efforts and meticulous attention to detail were instrumental in the installation of an entirely new generator in eight days. GSM2 Lopez was the critical and driving force behind the team's success. All team members involved in the repairs are true standouts who validated the excellence of technical competency at SWRMC San Diego. Thank you for ensuring our ship is ready for deployment. Well done!”

SWRMC Commanding Officer, Captain Skip Huck also passed along his personal BZ to all involved in his weekly All Hands call!

GSM2(SW) Abner Lopez excels while earning his final qualification during a high priority and high profile Gas Turbine engine change out onboard DDG-108.
"NAMTS is an important program here at Southeast Regional Maintenance Center," said SERMC Commanding Officer Capt. Dave Gombas. "NAMTS gives Sailors ship maintenance and repair training so when they return to sea duty, they have additional skills to keep their ships operational and fully mission ready without having to seek assistance from the outside to support that mission."

To expand the advantage, the SERMC Gas Turbine Shop recently sent an open invitation to all Mayport-based ships to receive Gas Turbine, Basic Engineering and Quality Assurance (QA) training. USS Roosevelt (DDG 86) was the first ship to take advantage of the opportunity.

GSM1 Moses Ichangai, the Gas Turbine Repair NAMTS coordinator, led the training on the standard Variable Stator Vane (VSV) component inspection and replacement, utilizing the in-shop LM2500 Gas Turbine trainer. The standard VSV control is an engine mounted, closed-loop system that sets the VSV position based on gas generator speed and air inlet temperature.

"The NAMTS program is centered on On-the-Job Training (OJT) and it is not a classroom earned NEC. It is hands-on, meaning you have to have the knowledge to perform the tasks. NAMTS is a great opportunity for Sailors to obtain knowledge, and take that knowledge back to the Fleet," said Osbert Teeka-Singh, SERMC’s Regional NAMTS Coordinator (RNC).

"Traditional school houses can only go so far," Ichangai said. "What we offer to USS Roosevelt is hands-on work on a daily basis, digging deeper into gear than they're allowed to go aboard ships." "That young sailor coming off the ship is used to doing O-level maintenance," Ichangai added. "Most of it is planned, preventive maintenance and on a lesser level, they do very basic corrective maintenance while the ship is at sea." By spending time doing complicated intermediate level maintenance repairs that are beyond the skills and facilities available to a ship crew, Sailors gain a deeper understanding of the requirements of their ratings and invaluable knowledge for advancement tests and job performance.

The next steps for the Gas Turbine Shop will be to include more engineering personnel and junior officers by equipping them with gas turbine theory, a general gas turbine knowledge, and proper maintenance and good engineering practices.

SERMC has 116 Sailors enrolled in the NAMTS program and has seen a steady increase in participation ever since the program was reconstituted a few years ago.
What a difference a year makes! In the spring of 2016 two major changes took place in San Diego. PNSY Det Ballast Point identified and designated a new Command NAMTS JQR coordinator in HT2 (SW) Jeffery Meginness and new RNC Doug Scholl sat down and looked at the Point Loma history and worked out a significant changes steering away from “that’s how it’s been done”.

By stopping dual enrollments, in which many sailors departed Det Ballast Point without either NEC, it allowed the Hull Repair shop to streamline their in-rate and NAMTS training which started to produce immediate results by creating a pipeline effect. Of course it didn’t hurt that in 2016, the Hull Repair shop was instrumental in work performed during USS Oklahoma City (SSN 723) dry dock availability and restricted availabilities onboard USS Pasadena (SSN 752) and USS Alexandria (SSN 757).

Currently PNSY Det. Ballast Point has only one sailor mandatory enrolled. HT2 Caneus reported onboard in October of 2016, and is 52% percent complete in his Pipefitter JQR. Since August of 2016, 100% of HTs stationed at PNSY Det Ballast Point has transferred with at least one NAMTS NEC. One sailor has transferred with two NEC’s and HT2 (SW/AW) Decoteau is onboard earning both Shipfitter and Pipefitter NEC’s. All other HTs have completed their Shipfitter NEC and have commenced on their second NEC in the Pipefitter JQR area.

In a recent meeting with Commander Lawrence Upchurch at PNSY Det Ballast Point, he complimented the improved metrics and turn around in the capabilities of his Advanced Welders, and former quad zero NEC HTs that are now assisting on production work in the shop.

The improvement has placed the NAMTS program in a positive light and the command is looking for new JQR areas to implement, expanding the skills of his submarine sailors stationed onboard. Commander Upchurch commended HT2 Meginness for his efforts to date.

NAVAL SUBMARINE SUPPORT FACILITY NEW LONDON (NSSF NLON)

NSSF NLON stood up the NAMTS program and as established as a NTMA in December 2016 with eleven personnel enrolled in Valve Maintenance and one individual enrolled in Inside Electrical Repair.

NSSF NLON is working in partnership with SUBLANT in the development of other JQR’s that the Submarine Force can use. Expect to see big things from NSSF NLON in the future as this command has an outstanding leadership team in place led by the Commander of Regional Support Group Groton, Captain Somlai and his superb team of Officers, Chiefs, and Petty Officers.
Norfolk Naval Shipyard (NNSY) has experienced significant increases in NAMTS enrollments and graduations in 2017. NNSY has marked this year with several important milestones that are intrinsic in determining the health of the NAMTS program at ‘America’s Shipyard’. Much of the success NNSY has had in recent months has been possible due to the overwhelming support the NAMTS program has enjoyed from command leadership and the various production shops where Sailors receive their training. Civilian and military qualifiers alike work hard to provide the foundation for the NAMTS programs’ three primary goals for Sailor training:

• Unit Self-Sufficiency
• Sailor Professional Development
• Post-Navy Workplace Development

By adhering to these goals and taking advantage of hands-on training available at NNSY, the NAMTS program continues to prove its valuable importance to enhancing Navy maintenance initiatives and increasing Sailor readiness across the Fleet.

Perhaps the most revealing and noteworthy accomplishment for NNSY is the number of graduates the command has produced in 2017. Since the start of the year, 24 Sailors have been awarded a NAMTS NEC in various skill areas at NNSY with many more projected to finish their qualifications before the holidays. These numbers are significant as NNSY has already exceeded the total number of graduates recorded in all of 2016.

A few other important milestones to mention are the number of Sailors stationed at NNSY that have earned multiple NAMTS NECs during their shore duty tour. So far this year, NNSY has awarded double NECs to three Sailors: MM1 (SW/AW) Knowlton (Valve and Pump Repair), EN1 (SW) Alford (Diesel and Pump Repair), and EN2 (SW) Drake (Diesel and Valve Repair). With most Sailors enrolling in additional skill areas upon completion of their first NAMTS JQR, the Sailors listed above have set an impressive example for others to emulate.

Additionally, NNSY hosted its first Pre-Commissioning Unit (PCU) Sailors from USS Thomas Hudner (DDG 116) in September 2016. After several months of intense on-the-job-training, these Sailors were able to complete the requirements necessary to earn their NAMTS NECs in an abbreviated period of time. EN1 (SW/IUSS) An was the first to complete the requirements to earn his NAMTS NEC in Diesel Repair, completing the JQR for Diesel Repair in just under six months. GSM2 (SW) Williams has also completed all the requirements necessary to earn the NAMTS NEC in Hydraulics Repair and will soon rejoin his unit with this accomplishment to add to his record.

In an effort to provide better service to Sailors, NNSY is teaming up with MARMC to implement a greater number of NAMTS JQRs currently unavailable to NNSY. NNSY and MARMC share a unique working environment in which both commands are located at one facility at Naval Station Norfolk (Bldg. CEP-200).

This close proximity provides a perfect opportunity for the commands to share resources and incorporate MARMC’s training infrastructure into an all-inclusive training apparatus that provides all Sailors the opportunity to learn skills they may otherwise not have the ability to do. This cooperation will begin slowly with one or two JQRs at a time with the goal of having all eligible NNSY and MARMC Sailors participating in training plans together as one unit.
Guarding deck openings and edges.

July 19, 2017 a USS Mason (DDG 87) Sailor fell through an 02 level escape trunk hatch landing in 4-220-2 after an approximately 40 foot fall and was hospitalized with multiple fractures. The initial investigation revealed that a contracted employee climbed up the interior escape trunk, opened the hatch, climbed back down the trunk leaving the hatch open and unguarded for approximately 45 seconds before the mishap occurred.

Other similar and recent incidents involving unguarded edges have also had catastrophic results including death.

Safety is an all hands evolution and should be take seriously as the next unguarded edge you are not aware of may be your last step.

Please review the following from the NAVSEA Standard Item 009-74 and OSHA 1953.73

NAVSEA 009-74

3.16 Ensure **protective measures** are **taken** in accordance with 2.1 (OSHA 1953.17) **before creating** a deck opening or an unguarded edge.

3.16.1 **Deck openings and unguarded edges shall not be left unprotected for any amount of time.**

OSHA 1953.17

1915.73(b) **When employees are working in the vicinity of flush manholes and other small openings** of comparable size in the deck and other working surfaces, such openings shall be suitably covered or **guarded** to a height of not less than 30 inches, except where the use of such guards is made impracticable by the work actually in progress.

1915.73(c) **When employees are working around open hatches not protected by coamings** to a height of 24 inches or around other large openings, **the edge of the opening shall be guarded** in the working area to height of 36 to 42 inches, except where the use of such guards is made impracticable by the work actually in progress.

1915.73(d) **When employees are exposed to unguarded edges** of decks, platforms, flats, and similar flat surfaces, **more than 5 feet above** a solid surface, **the edges shall be guarded** by adequate guardrails meeting the requirements of 1915.71(j) (1) and (2), unless the nature of the work in progress or the physical conditions prohibit the use or installation of such guardrails.

1915.73(e) **When employees are working near the unguarded edges** of decks of vessels afloat, **they shall be protected by personal flotation devices**, meeting the requirements of § 1915.158(a).

1915.73(f) **Sections of bilges from which floor plates or gratings have been removed shall be guarded by guardrails** except where they would interfere with work in progress. If these open sections are in a walkway at least two 10-inch planks placed side by side, or equivalent, shall be laid across the opening to provide a safe walking surface.

1915.73(g) **Gratings, walkways, and catwalks, from which sections or ladders have been removed, shall be barricaded with adequate guardrails.**

Open Hatch on USS Mason.
Photo taken from MARMC Safety Spotlight Unguarded Edges, Every Step Counts! By Frank S. Walker, MARMC Safety Director
PSNS & IMF Bangor, WA

NEC 4227 - Pump Repair Technician
 GSM1 (SW) Ollie Dunlap IV
 GSM2 Gregor Martinezsantos
 MM1 (SW) Eric Oldham
 MM1 (SW/AW) Connor Upchurch
 MM1 (SW/AW) Nicholas Wheeler
 MM2 (EXW) James Southern
 MM2 (SW) Colleen Tilley
 MM2 (SW) Mathew Colangelo
 MM2 (SW) William Clairmont
 MM2 (SW/AW) Christianpaulo Ang
 MM3 (SW) Gabrielle Mcnellige

NEC 4228 - Air Conditioning & Refrigeration Technician
 MM1 (SW/AW) Kevin Smith
 MM2 (SW) Jeffery Burdette

NEC 4541 - Hydraulics Repair Technician
 GSM1 (SW) Robert Pauley III
 GSM2 (SW) Chia Yen
 GSM2 (SW) Joshua Gregg
 GSM2 (SW) Tyler Blake
 GSM3 (SW) Benjamin Armstrong
 MM1 (SW) Joshua Keto

NEC 4651 - Outside Electrical Repair Technician
 EM1 (SW) Henry Navarro
 EM2 (EXW) Mark Weinreich
 EM2 (SW) Adam Lyons
 EM2 (SW) Chong Yu
 EM2 (SW) Corey Debacco
 EM2 (SW) Jeremy Jordan
 EM2 (SW) Ryan Kesler
 EM2 (SW) Stephen Campbell
 EM2 (SW/AW) Katherine Earls
 EM3 (SW) Thomas Hansen
 EM3 (SW) Valerie Dupont

NEC 4652 - Inside Electrical Repair Technician
 EM2 (SW) Angel Andonaire
 EM2 (SW) Bo Barquist
 EM2 (SW) Jeffrey Farlow
 EM2 (SW/AW) Linh Gurule
 EM3 (SW) Emmanuel Uzoh
 EM3 (SW/AW) Joshua Nikkari

NEC 4952 - Pipefitter
 HT1 (EXW/SW) Matthew Kellogg
 HT2 (SW/AW) Rhonisha Jackson

PSNS & IMF Everett, WA

NEC 0121 - Rigger / Weight Tester
 BM1 (SW) Jason Funk
 BM2 (SW) Jordan Vaughn
 BM2 (SW) Seth Simpson
 BM2 (SW/AW/IW) Christopher Dew
 BMC (SW/AW) Karl Otto

NEC 4227 - Pump Repair Technician
 MM2 (SW/AW) Johnathan Mclean

NEC 4229 - Heat Exchanger Repair Technician
 EN2 (SW) Jason Richardson
 MM1 (SW) Michael Graybill
 MM1 (SW/AW) Mi Tang
 MM2 (SW/AW) Johnathan Mclean

NEC 4340 - Diesel Engine-Governor & Injector Repair Technician
 ENC (EXW) Jonathan Felty

(Continued on page 31)
Everett Continued:

NEC 4406 - Inside Machinist
- MR1 (SW) Wyatt Pearson
- MR2 (SW) William Lemaitre

NEC 4651 - Outside Electrical Repair Technician
- EM1 (SW/AW) David Middleton
- EM1 (SW/AW) Michael Simmons

NEC 4911 - Shipfitter
- HT1 (SW) David Young

NEC 4952 - Pipefitter
- HT1 (SW) Rodney Hanson
- HT1 (SW) Trevor Lukonen

NEC 95AB - Valve Repair
- EN2 (SW) Jacob Joynes
- GSM1 (SW) Stephen Fromm
- MM1 (SW/IW) Bryan Brys
- MR2 (SW) Shane Butterfield

NEC 95AC - Watertight Closure Maintenance Technician
- DC1 (SW/AW/IW) Stephen Loehndorf
- MR2 (SW) Kirsten Bishop

PHNSY & IMF Pearl Harbor, HI

NEC 4911 - Shipfitter
- HT2 (AW) Tracey Storey
- HT3 Andrea Rivero

NEC 95AC - Watertight Closure Maintenance Technician
- EM2 (SW) Bryce Beratto
- EN2 (SW) Gregory Besiryan
- GSM2 (SW) Mariacamille Raymundo
- MM1 (SW) Christina Genova

NEC 95AC - Watertight Closure Maintenance Technician (cont.)
- MM1 (SW) Jordan Jimenez
- MM1 (SW/AW) Malcolm Pinkston
- MM2 (SW) Bobby Kinchen Jr

Mid-Atlantic Regional Maintenance Center (MARMC)

NEC 0121 - Rigger / Weight Tester
- AOAA Kenneth Martinez
- BM1 (SW) Joseph Beck
- BM1 (SW/EXW) Mark Moten
- BM2 Marian Hardwick
- BM2 (SW) Brian Penn
- BM2 (SW) Daniel Perla Iii
- BM2 (SW) Eric Coleman
- BM2 (SW) Janet Ventura
- BM2 (SW) Joshua Linder
- BM2 (SW) Kimberli Hailes
- BM2 (SW) Michael Dimick
- BM3 Stasha Hill
- BM3 (SW) Joshua Mebane
- BM3 (SW) Travon Olden
- BMC (EXW) Lawrence Mimbs
- BMC (SW) Brandon Bird
- EN3 (SCW) Raymond Johnson Jr

NEC 4140 - Gas Turbine Repair
- GSM1 (SW) Adam Babler
- GSM1 (SW) Antony Mccracken
- GSM1 (SW) Robert Busteed Jr
- GSM2 Erinmarie Fletcher
- GSM2 Jeremy Mims
- GSM2 Leonard Oglesby Jr

(Continued on page 32)
MARMC Continued:

NEC 4140 - Gas Turbine Repair (cont.)
- GSM2 Sven Olson
- GSM2 (AW) Staci Sirmans
- GSM2 (SW) Andrew Chin
- GSM2 (SW) Courtney Haugabook
- GSM2 (SW) Craig Bernbeck
- GSM2 (SW) Joseph Strauss Jr
- GSM2 (SW) Joshua Wilson
- GSM2 (SW) Marc Solomon
- GSM2 (SW) Marcus Tibbs
- GSM2 (SW) Michael Vaughn
- GSM2 (SW/AW) Delani Elvis

NEC 4145 - Gas Turbine Electrical Technician
- GSE1 (SW) Jonathan Lopez
- GSE1 (SW) Orsolya Koncz
- GSE2 (SW / EXW) Ali Saleh
- GSE3 Curtis Hoquee
- GSEC Timothy Ward

NEC 4406 - Inside Machinist
- MR1 (SW) Anthony Urbanski
- MR1 (SW) Erickson Ilagan
- MR1 (SW/AW) Thomas Chaney
- MR2 Anthony Keaton
- MR2 Jason Vance
- MR2 Jordan Hogue
- MR2 Ryan Darr
- MR2 (SW) Arthur Lujan Jr
- MR2 (SW) David Doucette
- MR2 (SW/AW) Marcus Flake
- MR3 Samuel Jines

NEC 4542 - Outside Machinist
- MM1 (SW) Charles Cox
- MM1 (SW) Giovanni Sison
- MM2 Andrew Altman
- MM2 (SW) Ashely Smith
- MM2 (SW) Jamel Newsome
- MM2 (SW) Juan Gomez
- MM2 (SW/AW) Charles Kal
- MM2 (SW/AW) Patrick Livingston II

NEC 4651 - Outside Electrical Repair Technician
- EM1 Karlaugust Peterson
- EM1 (SW) James Lafrance
- EM1 (SW) Shaun Douglas
- EM2 Brogley Russell Jr
- EM2 Eric Omalley
- EM2 James Ash
- EM2 Joseph Eversole
- EM2 Kenneth Adams Jr
- EM2 Kerryann Simon
- EM2 Sebastian Childers
- EM2 (SW) Alyssa Puryear
- EM2 (SW) Brandon Blakeslee
- EM2 (SW) Cornelia Washington
- EM2 (SW) Edward Allen
- EM2 (SW) Erikkka Dallmeyer
- EM2 (SW) Francisco Miranda
- EM2 (SW) Geoffrey Escobar
- EM2 (SW) Joanna Butcher
- EM2 (SW) Kelly Jordan
- EM2 (SW) Nathan Morinklein
- EM2 (SW) Stephanie Case
- EM2 (SW) Steven Black
- EM2 (SW) William Melton
- EM2 (SW) Yanitzta Zuniga
- EM2 (SW/AW) Brandon Holder
- EM2 (SW/AW) Kyle Neuhaus
- EM3 Annissa Walker
- EM3 (SW) Aubrey Anderson
- EM3 (SW) Erin Hirose
- EMFN Guanchen Liu
- EMFN Krista Garcia
- EMFN Randal Dalavai
- EMFR Matthew Stahl
- EMN1 Victor Walker
- EMN2 (SW) Stephen Barbee
- GSE1 Jesse Smith
- GSE1 (SW) Christopher Squires

NEC 4229 - Heat Exchanger Repair Technician
- MM1 Andrew Sartor
- MM1 (AW) Brian Wilkins
- MM1 (SW) Adam Perdue

(Continued on page 33)
GRADUATES
January - July 2017

(Continued from page 32)

MARM Continued:

NEC 4229 - Heat Exchanger Repair Technician (cont.)
 MM1 (SW) Derrick Baysal
 MM1 (SW) Jesus Figueroa-delgado
 MM1 (SW/AW) Clifford Bisch
 MM1 (SW/AW) Matthew Hoskins
 MM2 Axel Mejicordon
 MM2 Christopher Jordan
 MM2 Christopher Lares
 MM2 Corey Underwood
 MM2 Liza Bustamante
 MM2 Nicholas Froman
 MM2 Shale Lemons
 MM2 Shawn Weitzenhoffer
 MM2 Steven Litz
 MM2 Timothy John Pascual
 MM2 (SW) Desmond Wilkins II
 MM2 (SW) Mark Emery
 MM2 (SW) Marvin Cuavesma
 MM2 (SW) Michael Kennedy
 MM2 (SW) Paul Bradley
 MM2 (SW) Zachary Trogdon
 MM2 (SW/AW) Andrew Aultman
 MM2 (SW/AW) Edward Kirby Jr
 MM2 (SW/AW) Iasha Keller
 MM2 (SW/AW) Lawrence Brooks IV
 MM2 (SW/AW) Megan Crews
 MM2 (SW/AW) Michelle Ramirez
 MM3 Andres Cruz
 MM3 April Walden
 MM3 Noriza Shury
 MMC (SW) Derek Thorpe
 MMFN Serena Gonzalez

NEC 4911 - Shipfitter (cont.)
 HT3 Roman Martin
 HTFN Brittany Shepherd
 HTFN Christopher McCray
 HTFN Dylan Lash
 HTFN Evan Budke
 HTFN Grant Pilver
 HTFN Ian Siewierski
 HTFN Kelley Sundstrom
 HTFN Matthew Mccartney
 HTFN Maura Ruppert
 HTFN Ryan Fladhammer
 HTFN Sean Odonnell
 HTFN Steven Gerns
 HTFN Vanessa Cervantes

NEC 4952 - Pipefitter
 HT1 (SW) Eric Maloney
 HT1 (SW) Robert Grandjean
 HT2 (SW) Edouard Hollister Jr
 HT2 (SW) John Overwise
 HT2 (SW) Ty Benfer
 HTC (SW) Derek Sikes
 HTC (SW) Gary Reed
 HTFA Albert Pitiuen Jr
 HTFN Abel Vazqueznieves
 HTFN Nayelly Plascenciagomez

NEC 4957 - General Shipboard Welder Brazer
 HTFA Joshua Ross
 HTFN Jack Malkiewicz
 HTFN Kaila Lane

NEC 95AB - Valve Repair Technician
 EN1 Nicholas Gall
 EN1 (SW/AW / EXW) Bryan Ditmore
 EN2 Spencer Howell
 EN2 (EXW) Patrick Mason
 EN2 (SW) Joshua Young
 EN2 (SW/AW) Brandy Duncan
 EN3 (SCW) Raymond Johnson Jr
 HTFN Trenten Jorgensen

(Continued on page 34)
MARMC Continued:

NEC 95AB - Valve Repair Technician (cont.)
- MM1 Robert Firestone
- MM1 (SW) David Griffin
- MM2 Joseph Presley
- MM2 Raymond Hinnant Jr
- MM2 Robert Mckinney
- MM2 Whitney Baty
- MM2 (SW) Christopher Brewington
- MM2 (SW) Christopher Rivera
- MM2 (SW) Juan Gomez
- MM2 (SW) Tristan Rogers
- MM2 (SW) Zachary Ruple
- MM2 (SW/AW) Diane Saidat
- MM3 Kristine Chua
- MM3 Pamela Castro
- MM3 Quanisha Broomfield
- MM3 (SW) Alexander Liebeno
- MM3 (SW) Felipe Pobleteencina
- MMC Jason Billiter
- MMC (SW/AW) Jimmie Junious Jr
- MMC (SW/AW) William Stjean
- MMFN Natalie Salgado
- MMFN Selena Yates
- MR2 Keely Paige
- MRFN Hannah Swearingen
- MRFR Stephanie Heppard

NEC 95AC - Watertight Closure Maintenance Technician (cont.)
- DCC (SW) Andrew Woods
- DCC (SW) Edward Salazar
- DCC (SW) Marc Robins
- EM1 Walter Bonilla
- EMC (SW/AW) Felicia Reid
- EMC (SW/AW) Robert Akins Jr

Norfolk Naval Shipyard (NNSY)

NEC 4227 - Pump Repair Technician
- EN1 (SW/AW) Marcus Alford
- MM1 (SW) Amy Khantavongsay
- MM1 (SW) James Knowlton
- MM1 (SW/AW) Gregory Murphy
- MM2 (SW) Dante Axel
- MM2 (SW/AW) Joseph Batiste
- MM2 (SW/AW) Ricky Ardrey
- MMA2 (SS) William Tyler

NEC 4340 - Diesel Engine-Governor & Injector Repair Technician
- EN1 (SW) Michael Harvey
- EN1 (SW/AW) Tameka Palma
- EN1 (SW / IUSS) Wei An
- EN2 (SCW) Benjamin Juergens
- EN2 (SW) Carlos Drake
- EN2 (SW) Donald Walton II
- EN2 (SW) Jezreel Arrington
- EN2 (SW) Kaleigh Corrales
- EN2 (SW) Rodney Williams
- EN2 (SW) Sean Mcmurray
- EN2 (SW / EXW) Michael Castrechino

NEC 4541 - Hydraulics Repair Technician
- GSM2 (AW) Anthony Williams

(Continued from page 33)

(Continued on page 35)
GRADUATES

January - July 2017

(Continued from page 34)

NNSY Continued:

NEC 4651 - Outside Electrical Repair Technician
EM2 (SW/AW) Samantha Williams

NEC 95AB - Valve Repair Technician
EM2 (SW) Gerald Risko Jr
EN1 (SW) Anthony Hailey Jr
EN2 (SW) Carlos Drake
EN2 (SW) Leeroy Paben
ETN1 (SW) Michael Potoczek
ETN2 (SW) Christopher Simpson

Southeast Regional Maintenance Center (SERMC)

NEC 0121 - Rigger / Weight Tester
BM1 (SW/AW) Elvis Lindsay
BM2 (SCW) Brandon Phillis
BM2 (SW) Anthony Thomas
BM2 (SW) Erika Moreno
BM2 (SW) Quincy Smith
BM2 (SW) Robert Titus
BM2 (SW/AW) Marco Pozo
BM3 Deonna Wiggins
BM3 Kyle Sharpton
BM3 (SW) Lekarlis Diggles
BMC (SW) Benito Salinas Jr

NEC 0121 - Rigger / Weight Tester (cont.)
BMC (SW/AW) Kathy Tonnah
BMSN Robert Adams Jr

NEC 4140 - Gas Turbine Repair Technician
GSM1 (SW) Nathan Herbert
GSM2 (SW) Gary Lusk Jr
GSM2 (SW) Jonathan Slater
GSM2 (SW) Rong Guan
GSM2 (SW) Ryan Gutierrez
GSM3 (SW) Matthew Thorne

NEC 4227 - Pump Repair Technician
EN1 (SW) Daniel Berry
GSM2 (SW) Mario Rodriguez
GSM2 (SW/AW) Brittney Solomon
MM1 (SW/AW) Markanthony Barao
MM1 (SW/AW) Andrea Villarreal
MM1 (SW/AW) Jared Alessi
MM2 (SW/AW) Kylemanuel Veran
MM3 Brittany Aldredge
MM3 (SW) Pedro Diazcruz
MMFR Brianna Fouche

NEC 4228 - Air Conditioning and Refrigeration
MM1 (SW) Aaron Wertz
MM1 (SW) Emmanuel Clermont
MM1 (SW) Fatiou Assani
MM2 (SW) Darron Phillips
MM2 (SW) Demorial Jones
MM2 (SW) Jeremy Wymer
MM2 (SW) Latrese Russell
MM2 (SW/AW) Elyjo Manalo
MMC (SW) Gerald Watkins
MMC (SW) John Crownover
MMC (SW) Mark Holbert

NEC 4252 - Outside Machinist
GSM1 (SW) Barry Mincey Jr

NEC 4340 - Diesel Engine-Governor & Injector Repair Technician
EN1 (SW) Wesley Dollarballard
EN2 Corey Linton

(Continued on page 36)
SERMC Continued:
NEC 4340 - Diesel Engine-Governor & Injector Repair Technician (cont.)
ENC (SW) Floyd Murray Jr
ENFA Hannah Ybarra
ENFN Austin Whittington

NEC 4406 - Inside Machinist
MR1 (SW) Dusty Erno
MR1 (SW/AW) Forrest Morris III
MR3 Sierra Kaibel

NEC 4651 - Outside Electrical Repair Technician
EM2 Alexander Daniel
GSE1 (SW) Ralph Sotelo

NEC 4652 - Inside Electrical Repair Technician
EM1 (SW) Carlos Genaoavargas
EM1 (SW) Ronald Jones Jr
EM2 (SW) Danelle Nappi
EM2 (SW) Ryan Mcpeake
EM3 Taylor Metcalf

NEC 4789 - Interior Communications Repair Technician
IC3 Anthony Paulson
IC3 Farah Pope

NEC 4952 - Pipefitter
HT3 Eric Johnson
HT3 (SW) Dallis Dixon

NEC 95AB - Valve Repair Technician
DCC (SW) John Belli Jr
EN2 (SW/AW) Rodney Harris

NEC 95AC - Watertight Closure Maintenance Technician
BM2 (SW) Eric Garcia
DC1 (SW) Cardell Hill
DC2 (SW/AW) Brandon Hunter
DCFN Victor Alvarez

Southwest Regional Maintenance Center (SWRMC)

NEC 0121 - Rigger / Weight Tester
BM1 (SW/AW) Rilius Jones
BM1 (SW/AW) Ryan Sharma
BM2 (SW) George Cortes Jr
BM2 (SW) Kolby Vandonge
BM2 (SW) Matthew Mcginn
BM2 (SW) Susana Espinosa
BMC (SW) Dennie Payne
BMC (SW) Rolando Rios
BMC (SW/AW) Michael Simms
MM1 (SW/AW) Michael Hendrix

NEC 4140 - Gas Turbine Repair Technician
GSE1 (SW) Daniel Menesesarellano
GSM1 (SW) Jessie Benjamin
GSM2 (SW) Abner Lopez
GSM2 (SW) Olugbenga Shofela
GSM2 (SW) Scotty Sanney Jr
GSM2 (SW) Trevor Alexander
GSMFN Alyssa Pubentz
GSMFN Katelyn Dickey

NEC 4145 - Gas Turbine Electrical Repair Technician
GSE1 (SW) Prabhat Khadka
GSE2 (SW) Henry Gore
GSE2 (SW) Nicole Johnson
GSEC (SW) Ovillan Villanueva

NEC 4228 - Air Conditioning & Refrigeration Technician
MM1 Johnson Francia
MM1 (SW/AW) Lezarick Bailey
MM1 (SW/AW) Patrick Jackson
MM1 (SW/AW) Yussuf Shinio

(Continued on page 37)
SWRMC Continued:

NEC 4228 - Air Conditioning & Refrigeration Technician (cont.)
MMC (SW/AW) Carlos Siguenza
MMC (SW/AW) Joseph Reyes

NEC 4340 - Diesel Engine-Governor & Injector Repair Technician
EN1 (SW) Angel Romero
EN1 (SW) Brandon Hendry
EN1 (SW) Kevin Hobdy
EN2 Rebecca Johnson
EN2 (SW) Christopher Moreno
EN2 (SW) Derrick Fosu
EN2 (SW) Shellene Williams
EN3 (SW) Akilah Mcmullen
ENC (SW) Ioselani Pouesi

NEC 4406 - Inside Machinist
MR2 (SW) Raymond Rodriguezgarcia
MRFA Galdina Guerrero
MRFN Lynsey Clark
MRFN Tynesia Biggs

NEC 4542 - Outside Machinist
MM1 (SW) Rickey Roberson Sr
MM2 (SW) Carilynn Keeney
MM2 (SW) Dani Voeuth
MM2 (SW) Samuel Santayana Jr
MM2 (SW) Shawn Clay
MM3 Alex Cairel
MM3 Caleb Savoia
MM3 Dominic Palanca
MM3 Jessica Maurer
MM3 Keenan Anthony
MM3 Laly Vang
MM3 Raphael Tan
MMFA Christopher Menendez
MMFA Emmanuel Chicas
MMFA Kyra Mcclinton
MMFN Chauntay Stovall
MMFN Jeanpaul Krachtus
MMFN Yubo Gong

NEC 4651 - Outside Electrical Repair
EM1(SW/AW) Laurence Sonera
EMC (SW/AW) Gerardo Ramos

NEC 4782 - Interior Communications Repair Technician
IC1 (SW) Benjamin Mullett
IC1 (SW) Christopher Smith
IC1 (SW) Darrett Whitfield Jr
IC1 (SW) Michael Edwards
IC1 (SW) Preston Wright
IC1 (SW) Sean Joker
IC1 (SW/AW) Jonathan Muphey
IC2 (SW) Randall Hites
IC2 (SW/AW) Jamie Brassfield
IC3 Jordan Falkosky
IC3 (SW) Paul Kelly
ICC (SW) Larry Scott Jr
ICC (SW/AW) Amanda Munson
ICC (SW/AW) Kelly Preston
ICSN Lorena Villafranco

NEC 95AB - Valve Repair Technician
EMN1 (SW) Javier Gonzalez Jr
GSM1 (SW) Anderson Guimaraes
MM1 (SS) Robert Secor
MM1 (SW/AW) Joseph Herrera
MM1 (SW/AW) Sherrie Anaba

NEC 95AC - Watertight Closure Maintenance Technician
BMC (SW / EXW) Michael Ronga
DC1 (SW/AW) Jordan Atwood
DC1 (SW/AW) Rebecca Thomas
DC1 (SW/AW) Shophia Atkinson
DC2 (SW) Ethan Mcgee
DC2 (SW) Kevin Underriter
DCC (SW) Douglas Newland Jr
DCC (SW) Jay Hernandez
HT3 Gregory Johnston
HT3 (SW) Joel Rogersorwatkins
HTC (SW) Gregory Ellis
MM2 (SW/AW) Justin Webb

(Continued on page 38)
(Continued from page 37)

Shore Intermediate Maintenance Activity
San Diego Detachment Ballast Point
(SWRMC SSMD)

NEC 4911 - Shipfitter
HT1 (SW) Brian Shults
HT2 (SW) Christina Cummins
HT2 (SW) Joshua Henderson
HT2 (SW) Lauren Nunnari
HT2 (SW) Marcus Brown
HT2 (SW) Nicholas Ardoin
HT3 (SW) Carlton Thomas
HT3 (SW) Thomas Timmons
HTFN Alisha Passineau

NEC 4952 - Pipefitter
HTC (SW) Johnathon Fleshman

USS Emory S. Land (AS 39)

NEC 4652 - Inside Electrical Repair Technician
EM1 (SW) Aldwin David

NEC 4911 - Shipfitter
HTFN Zachary Wilson

USS Frank Cable (AS 40)

NEC 4406 - Inside Machinist
MR2 (SW) Thomas Evans
MR2 (SW) Tyler Knopsnyder

NEC 4651 - Outside Electrical Repair Technician
EM3 (SW) Bianca Mendoza

NEC 4911 - Shipfitter
HT2 (SW) Zachariah Thomas

USS George H. W. Bush (CVN 77)

NEC 4911 - Shipfitter
HTC (AW) Brian Barrineaujuhas

USS Nimitz (CVN 68)

NEC 95AB - Valve Repair Technician
AO2 (EXW) Christopher Stubbs
GMC (SW/AW / IW) Gregory Waite

(Continued on page 39)
(Continued from page 38)

USS Iwo Jima (LHD 7)

NEC 95AB - Valve Repair Technician
MM1 (AW/SW/SS) Joshua Mayo
FN (SW) Brandon Strohfus

NEC 4227 - Pump Repair Technician
MM2 Zachary Grondin
MM2 (SW) Nathan Beck
MM2 (SW/AW) David Lanum
MM3 (SW) Cody Hart
MM3 (SW/AW) Diana Ballesteros

NEC 95AB - Valve Repair Technician
MM2 (SW) Boaz Dotch
MM2 (SW/AW) Nathan Pynckel

USS Theodore Roosevelt (CVN 71)

NEC 4651 - Outside Electrical Repair
EM2 (SW) Zachary Lalonde
EM2 (SW/AW) Andrew Lish
EM3 (SW) Patrick Dougherty
EM3 (SW/AW) Kash Lewin

NEC 4227 - Pump Repair Technician
MM1 (SW/AW) Hannah Myers

Congratulations to all the NAMTS Maintenance Warriors who were selected for Chief Petty Officer FY-18
<table>
<thead>
<tr>
<th>NEC</th>
<th>NEC Title</th>
<th>Ratings</th>
<th>MARMC</th>
<th>NNSY</th>
<th>SERMC</th>
<th>SWRMC</th>
<th>PNS DET SD</th>
<th>PSNS & IMF Bangor</th>
<th>PSNS & IMF Everett</th>
<th>HRMC</th>
<th>NSSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4228</td>
<td>Air Conditioning & Refrigeration</td>
<td>MM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4340</td>
<td>Diesel Engine</td>
<td>EN</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4145</td>
<td>Gas Turbine</td>
<td>GSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4140</td>
<td>Gas Turbine Repair</td>
<td>GSE, GSM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4957</td>
<td>General Shipboard Welder / Brazier</td>
<td>HT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pending</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4229</td>
<td>Heat Exchanger</td>
<td>GSM, MM</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4541</td>
<td>Hydraulics Repair</td>
<td>ABE, ABF, GSE, GSM, MM</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4652</td>
<td>Inside Electrical</td>
<td>EM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4789</td>
<td>Interior Communications</td>
<td>IC</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Pending</td>
</tr>
<tr>
<td>4406</td>
<td>Inside Machinist</td>
<td>MR</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pending</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4651</td>
<td>Outside Electrical</td>
<td>EM, GSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>Pending</td>
</tr>
<tr>
<td>4542</td>
<td>Outside Machinist</td>
<td>GSM, MM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4952</td>
<td>Pipefitter</td>
<td>HT</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4227</td>
<td>Pump Repair</td>
<td>ABE, ABF, EN, GSM, MM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>0121</td>
<td>Rigger / Weight Tester</td>
<td>BM, DC, EM, EN, GSE, GSM, HT, IC, MM, MR</td>
<td>X</td>
<td>Pending</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>95AA</td>
<td>Shipboard Calibration Coordinator</td>
<td>EM, EN, ET, GSE, GSM, IC, MM</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4911</td>
<td>Shipfitter</td>
<td>HT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>95AB</td>
<td>Valve Repair</td>
<td>All Ratings</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>95AC</td>
<td>Watertight Closure</td>
<td>All Ratings</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
To learn more about the NAMTS program and how you or your Sailors can get involved, please contact your nearest Regional NAMTS Coordinator (RNC), Afloat NAMTS Coordinator (ANC), or CNRMC by using the information below.

<table>
<thead>
<tr>
<th>Points of Contact</th>
<th>CNRMC - Code 900 Director, I-Level Production</th>
<th>CNRMC - Code 930 NAMTS Program Manager</th>
<th>CNRMC –Code 920 Maintenance Assist Team</th>
<th>NAMTS Production Equipment Specialist - Lead</th>
<th>Afloat NAMTS Coordinator - East Coast</th>
<th>Assistant Project Manager - East Coast</th>
<th>NAMTS Project Manager</th>
<th>Assistant Project Manager - West Coast</th>
<th>Afloat NAMTS Coordinator - West Coast</th>
<th>Regional NAMTS Coordinator - Mid-Atlantic Regional Maintenance Center (MARMC)</th>
<th>Regional NAMTS Coordinator - Puget Sound Naval Shipyard & Intermediate Maintenance Facility (Bangor)</th>
<th>Regional NAMTS Coordinator - Norfolk Naval Shipyard (NNSY)</th>
<th>Regional NAMTS Coordinator - South East Regional Maintenance Center (SERMC)</th>
<th>Regional NAMTS Coordinator - Southwest Regional Maintenance Center (SWRMC)</th>
<th>Regional NAMTS Coordinator - Pearl Harbor Naval Shipyard & Intermediate Maintenance Facility</th>
<th>NAMTS Production Equipment Specialist - East Coast</th>
<th>NAMTS Production Equipment Specialist - West Coast</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNRMC - Code 900 Director, I-Level Production</td>
<td>Daniel Spagone</td>
<td>757.400.0900</td>
<td>daniel.spagone@navy.mil</td>
<td>Gerald Schrage</td>
<td>757.400.2103</td>
<td>gerald.schrage@navy.mil</td>
<td></td>
</tr>
<tr>
<td>CNRMC - Code 930 Assistant NAMTS Program Manager</td>
<td>Timothy Jones</td>
<td>757.400.2467</td>
<td>timothy.a.jones1@navy.mil</td>
<td>Gary Evans</td>
<td>757.400.2127</td>
<td>gary.evans1@navy.mil</td>
<td></td>
</tr>
<tr>
<td>NAMTS Project Manager</td>
<td>Ted Dennis</td>
<td>757.502.7424 x1191</td>
<td>theodore.dennis.ctr@navy.mil</td>
<td>Brian Jolley</td>
<td>757.400.2208</td>
<td>brian.jolley.ctr@navy.mil</td>
<td></td>
</tr>
<tr>
<td>Assistant Project Manager - East Coast</td>
<td>Art Sisk</td>
<td>757.400.2129</td>
<td>arthur.sisk.ctr@navy.mil</td>
<td>Bill Edwards</td>
<td>619.556.7640</td>
<td>william.r.edwards.ctr@navy.mil</td>
<td></td>
</tr>
<tr>
<td>Afloat NAMTS Coordinator - East Coast</td>
<td>Kevin Bond</td>
<td>757.400.2620</td>
<td>kevin.bond.ctr@navy.mil</td>
<td>Larry Burns</td>
<td>619.556.2910</td>
<td>lawrence.burns.ctr@navy.mil</td>
<td></td>
</tr>
<tr>
<td>Regional NAMTS Coordinator - Mid-Atlantic Regional Maintenance Center (MARMC)</td>
<td>Jason Nofsker</td>
<td>757.400.2619</td>
<td>jason.a.nofsker.ctr@navy.mil</td>
<td>Sandy Hinz</td>
<td>360.315.1800</td>
<td>sandra.hinz.ctr@navy.mil</td>
<td></td>
</tr>
<tr>
<td>Regional NAMTS Coordinator - Norfolk Naval Shipyard (NNSY)</td>
<td>Andrew Porter</td>
<td>757.396.7771</td>
<td>andrew.r.porter1.ctr@navy.mil</td>
<td>Joe Bigwarfe</td>
<td>425.304.5515</td>
<td>Joseph.bigwarfe.ctr@navy.mil</td>
<td></td>
</tr>
<tr>
<td>Regional NAMTS Coordinator - South East Regional Maintenance Center (SERMC)</td>
<td>Osbert Teeka-Singh</td>
<td>904.270.5126 x3019</td>
<td>osbert.teekasingh.ctr@navy.mil</td>
<td>Doug Scholl</td>
<td>619.556.4756</td>
<td>douglas.scholl.ctr@navy.mil</td>
<td></td>
</tr>
<tr>
<td>Afloat NAMTS Coordinator - Guam</td>
<td>James Heffelfinger</td>
<td>671.343.6240</td>
<td>james.heffelfinger@valkyrie.com</td>
<td>Ed Yamashiro</td>
<td>808.473.8000 x6357</td>
<td>edwin.yamashiro.ctr@navy.mil</td>
<td></td>
</tr>
<tr>
<td>NAMTS Production Equipment Specialist - East Coast</td>
<td>James Gessner</td>
<td>757.400.2209</td>
<td>james.gessner.ctr@navy.mil</td>
<td>NAMTS Production Equipment Specialist - West Coast</td>
<td>Jeff McNicholl</td>
<td>619.405.1463</td>
<td>jeffrey.mcnicoll.ctr@navy.mil</td>
<td></td>
</tr>
</tbody>
</table>