IN THIS ISSUE:
- Why NAMTS? - Self-Sufficiency & SFIMA
- PSNS & IMF Everett Sailor earns 3 NECs
- NSSF New London implements NAMTS
- 799 NECs earned in 2016
Welcome to the 44th Edition of “NAMTS News”

This newsletter contains information about the Navy Afloat Maintenance Training Strategy (NAMTS) Program. The purpose of this publication is to raise the level of awareness of and support for NAMTS among the Navy’s senior leadership, resource managers, maintenance personnel and mentors by providing accurate information on current issues and events related to this important program.

You can access more information on the program, including its governing instructions, training requirements, links to related websites, FAQs, and archived newsletters at:

https://navsea.portal.navy.mil/field/cnrmc/namts

NAMTS Training Sites

- Pearl Harbor Naval Shipyard & Intermediate Maintenance Facility (PHNSY & IMF Hawaii) (HRMC)
- Southwest Regional Maintenance Center (SWRMC)
- Portsmouth Naval Shipyard Detachment San Diego (PNS DET SD)
- Naval Submarine Support Facility New London (NSSF)
- Mid-Atlantic Regional Maintenance Center (MARMC)
- Naval Submarine Support Facility New London (NSSF)
- Virginia Naval Shipyard (VNSY)
- Northeastern Regional Maintenance Center (NERMC)
- Naval Submarine Support Facility New London (NSSF)

Guam Afloat
- USS Emory S. Land (AS 39)
- USS Frank Cable (AS 40)

East Coast Afloat
- USS Dwight D. Eisenhower (CVN 69)
- USS Abraham Lincoln (CVN 72)
- USS Harry S. Truman (CVN 75)
- USS George H. W. Bush (CVN 77)
- USS Wasp (LHD 1)
- USS Kearsarge (LHD 3)
- USS Bataan (LHD 5)
- USS Iwo Jima (LHD 7)

West Coast Afloat
- USS Nimitz (CVN 68)
- USS Carl Vinson (CVN 70)
- USS Theodore Roosevelt (CVN 71)
- USS John C. Stennis (CVN 74)
- USS Essex (LHD 2)
- USS Boxer (LHD 4)
- USS Arco (ARDM 5)

NAMTS News 2 January 2017
I
n the 1990s as the Cold War was over the navy shifted from power projection around the globe. The Submarine Ten
ders and Destroyer Tenders that provided Intermediate Level (I-level) maintenance support for deployed ships and submarines were decommissioned. Many of the Shore Intermediate Maintenance Activities (SIMA) were consolidated or closed and by 2003 a major cultural change happened in the Navy. The Navy changed from training and developing Sailors as Owner’s, Operator’s and Maintainer’s to only Operators.

While this model showed immediate cost savings, the unintended consequences were realized only a few short years later. Those who have been around the Navy for a long time are very familiar with the infamous “Balisle Report” more formally known as the Fleet Review Panel of Surface Force Readiness, authored by Vice Admiral Phillip M. Balisle, 26 February 2010. Vice Admiral Balisle surmised that the changes in manpower and manning; training; material readiness; and chain of command oversight caused unintended consequences that were detrimental to overall readiness. Reduced manning on ships and at shore support facilities placed unmanageable workloads on smaller, less trained crews; consequently, the ships were not maintained to required standards.

As a result, in October 2010, Commander, Navy Regional Maintenance Center (CNRMC) Rear Admiral David Gale, tasked his command with righting the I-level maintenance ship through the use of the Navy Afloat Maintenance Training Strategy (NAMTS) with strong support from the Fleet Maintenance Officers at United States Fleet Forces Command and Commander, Pacific Fleet.

After analyzing the existing NAMTS program, reviewing Inspection and Survey (INSURV) reports, Afloat Training Group (ATG) reports, Naval Safety Center Surveys and directly liaising with Surface Type Commander staffs, it became clear that the Navy had significant challenges with maintenance knowledge and experience starting with shipboard Planned Maintenance System (PMS) to routine organizational level (O-level or TA4) work normally accomplished by ship’s force. The Navy needed a solution that provided not only short term successes but also long term, quantifiable, successes to ensure the continued fiscal support of I-level maintenance and training programs.

As maintenance knowledge and ability decreased and maintenance requirements increased, Fleet Maintenance Officers initiated a TA4 Buy Down program where much of the backlog of TA4 work that Sailors should be expected to accomplish was contracted out to private industry. This effort showed some success in improving readiness but was far too expensive and did not support unit self-sufficiency, a key tenant of the Balisle Report.

In order to reverse course and restore I-Level maintenance capabilities and training, it was determined that 1,587 Sailors needed to be added to the Regional Maintenance Centers (RMC); which included reestablishing South East Regional Maintenance Center (SERMC), Mayport, Fla. and getting the Sailors at the Naval Shipyards in Norfolk, Va., Puget Sound, Wash., and Pearl Harbor, Hawaii, performing repair work again.

With the decommissioning of the SIMAs, and all but two of the Submarine Tenders, there was no longer standard I-Level Process Control Procedures (PCP) where Sailors used the same equipment and Quality Assurance (QA) standards they would use at sea. Most of the equipment that was standard at the SIMAs and on the Tenders was sent to Defense Reutilization and Marketing Office (DRMO) and replaced with Shipyard Depot Level (D-level) machinery. A recent review of shipboard repair equipment on big deck AMPHIBs and CVNs revealed that much of the original outfitted machine shop and repair equipment was removed or unused in lay-up.

In order to standardize product lines at the RMCs and institute standard Formal Work Packages (FWP) and Controlled Work Packages (CWP), CNRMC worked with the Fleet Mainte

(Continued on page 4)
nance Officers to determine what I-level work Sailors and civilians would be capable of performing in the RMCs. (The current list of capabilities is published in the Joint Fleet Maintenance Manual (JFMM) Vol. VI, Ch.35 Appendix A.)

As Sailors arrived at the RMCs and started turning wrenches it was clear that very few had any actual hands-on maintenance and repair experience or even hands-on training. Many of the enlisted maintenance schools had replaced hands-on training with computer-based training or eliminated the hands-on portion all together, thus creating a pool of “Operators” who now needed to be trained to “own” and “maintain” their equipment through the NAMTS program.

As I-Level maintenance was broken, so was Shipboard PMS. To address the lack of PMS knowledge, Commander, Navy Surface Forces Atlantic, Rear Admiral Thomas, requested CNRMC to work with his maintenance staff and Mid-Atlantic Regional Maintenance Center (MARMC), then known as Norfolk Ship Support Activity (NSSA). The result was Maintenance Assist Teams (MAT) that exported RMC Sailors and civilians, shop-to-ship, to train ships force while performing PMS on targeted high-failure equipment as identified by INSURV. The purpose of these MATs is to train Sailors while providing a comprehensive material assessment and maintenance review with a goal of increasing the level of readiness of the targeted systems. Through the use of NAMTS and MATs unit self-sufficiency is promulgated to ships force by over the shoulder and hands-on learning while performing the required preventive and corrective maintenance necessary to support sustained operations.

Initially, CNRMC started with Valve MAT, focusing on Main and Secondary Drain systems; Deck Equipment MAT, focusing on Boat Davits, J-Bar Davits, Lifelines and topside ladders; Auxiliaries MAT, focusing on air-conditioning and refrigeration, hydraulic systems, anchor windlass and steering systems. Following the enormous success of these MATs NRMC developed Electrical MAT; Gun MAT; Gas Turbine MAT; Rigid Inflatable Boat MAT; Watertight Door MAT; and Laundry and Galley MAT. Metrics continue to show that ships that take advantage of MATs within 6-months of INSURV are able to exceed their material readiness requirements. It is also recommended that MATs be taken advantage of prior to deployment to ensure combat readiness.

In 2014, CNRMC positioned itself to mature NAMTS and along with the NAMTS prime contractor, Valkyrie Enterprises, and their partners Cape Henry & Associates (CHA) and Science Applications International Corporation (SAIC), have reinvigorated I-Level maintenance hands-on training by “forging maintenance warriors” who are competent and confident in their ability to own, maintain and operate their equipment. CNRMC has also recognized this training produced fantastic increases in Sailor Professional Development.

In 2015, CNRMC rolled out NAMTS training to CVNs and Big Deck AMPHIBs to provide these ships, which have Intermediate Maintenance Activity (IMA) capabilities in their own right, access to the NAMTs program. The intention is to capitalize on the production work that these capable ships perform as Strike or Expeditionary IMAs (SFIMA or EFIMA) to train their Sailors. CNRMC is also working on providing NAMTS programs at Pre-Commissioning Units in the future.

So, to answer the question “why NAMTS” - hands on maintenance opportunities for Sailors has significantly decreased, brick and mortar school houses have been decommissioned and computer-based training alone has failed to produce the right skill sets required to repair critical equipment within the life lines. NAMTS takes advantage of a resurrected intermediate level maintenance capability at the RMCs and is producing qualified maintenance warriors with specific Navy Enlisted Classification (NEC) codes who will be detailed to specific billets afloat. The net effect is a better qualified and more knowledgeable Sailor, who is able to advance at a quicker pace and positively contribute to increased readiness and unit self-sufficiency.
CMDCM (SW/EXW/AW) Kelley was born in Farmington, Maine in 1968 and graduated from High School in Westerly, Rhode Island in 1986. In September 1987, he enlisted in the U.S. Navy and went to boot camp in San Diego, Calif. After completing recruit training and Basic Electricity and Electronics school in San Diego, Calif. he went to ET “A” school in Great Lakes, Ill. and graduated in November 1988. He followed on to IFF “C” school in Norfolk, Va. and finally went to his first assignment at Naval Submarine Support Facility New London, Conn. in May of 1989. Follow-on assignments include OCEANOGRAPHIC UNIT 5 (TAGS 5); USNS Saturn (TAFS 10); NCTAMSLANT; USS Normandy (CG 60); Fleet Combat Training Center Atlantic, Dam Neck; JCISA Yongson, Korea; USS Laboon (DDG 58); USS Gonzalez (DDG 66); USS Stout (DDG 55); Naval Coastal Warfare Squadron Four in Portsmouth, Va.; Naval Information Operations Command Norfolk, Va.; Command Master Chief onboard USS Hawes (FFG 53); Command Master Chief of Norfolk Naval Shipyard; Command Master Chief onboard USS Ramage (DDG 61); Command Master Chief onboard USS Leyte Gulf (CG 55); Command Master Chief at Naval Surface Forces Atlantic Staff; and is currently serving as the Command Master Chief of Navy Regional Maintenance Center.

He attended the Senior Enlisted Academy in Newport, R.I. in October 2007, and was selected into the Command Master Chief program in January 2008 and graduated from the Keystone Course in February 2010.

CMDCM Kelley’s personal decorations include Defense Meritorious Service Medal, Meritorious Service Medal (Gold Star), the Navy and Marine Corp Commendation Medal (3 Gold Stars), Army Commendation Medal, and the Navy and Marine Corps Achievement Medal (4 gold stars).

CNRMC gets a new Command Master Chief

Message to the Mess from CMDCM Kelley

In this day and age of maintenance, the importance of training our Sailors to be self-sufficient is more critical than ever. Once a ship hauls in all lines, it needs to get back to being self-sufficient again and the way to get to that point is through the NAMTS program. I feel our knowledge of this program as a Chiefs Mess is lacking throughout the Fleet and our Chief’s need to understand the importance of this program and get their Sailors involved in NAMTS early and often.

Every Sailor trained through the NAMTS program gets the following benefits for self, ship, and Navy:
1. They receive an NEC and are more knowledgeable within their rating, making them have a better chance when they are taking advancement exams.
2. The ship gets a technician who is more knowledgeable and makes the ship more self-sufficient.
3. The Navy can save time and money when a Sailor can make repairs at the deck plate level, keeping a ship fully operational while following National tasking.
4. The Sailor can take this qualification into their post-Navy career.

The program is a win for everyone and will make our Navy a stronger force. It’s critical that our Chief’s Mess understands and promotes this program. This is the message I will be bringing with me in my travels to the deck plates of our Navy.
Rear Admiral Stephen F. Williamson, Director for Fleet Maintenance U.S. Pacific Fleet spent the day at Southeast Regional Maintenance Center (SERMC) January 23, 2017 receiving a tour of key production shops and labs.

Rear Admiral Williamson kicked off the visit by presenting 39 SERMC Sailors with NAMTS certificates of completion during an awards ceremony, and stressed the importance of achieving the qualification for personal and professional growth.

“NAMTS is not just a PQS qualification; it tells your leaders you have the skills to do the work. When you return to the fleet, make sure you skipper knows you have the qualifications, you’re trained, and you’re ready to do the work. That’s the kind of pride I want you to take back with you when you return to sea,” Williamson said.

Upon completion, Rear Admiral Williamson returned to Pacific Fleet headquarters with a better understanding of SERMC’s ship maintenance capabilities and capacity, logistics requirements and innovative practices.

“NAMTS is not just a PQS qualification; it tells your leaders you have the skills to do the work. When you return to the fleet, make sure you skipper knows you have the qualifications, you’re trained, and you’re ready to do the work. That’s the kind of pride I want you to take back with you when you return to sea,” Rear Admiral Williamson
Parents teach children to do things by doing. They don't give a series of lectures to their children to prepare them to walk, talk, run, or play a game. They just let their children do these things. Parents sit in the passenger seat while their teenager tries out the driver’s seat for the first time. It’s nerve-wracking, but parents do it because they know there’s no better way.

It's difficult and time-consuming to use apprenticeship training in mass education, so instead of allowing students to learn by doing, we use courses of instruction to teach students the theory of the skill without the practical application and at times, the classroom instruction is presented by someone who has never performed the tasks themselves.

A successful Vocational Technical Trades school uses the most effective learning method, learning by doing. To learn and become proficient in repairing a valve, manufacturing a hydraulic hose, repairing a heat exchanger, bending pipe, or simply painting a bulkhead, you must physically experience doing it. Throughout history, people developed professional skills this way, progressing from apprentice to journeyman to master craftsmen meant you experienced and became proficient in a trade. NAMTS leaders understand that learning a skill means trying your hand at the skill. Most importantly, when there is no real harm in trying and failing, we allow and encourage apprentices to give it a shot as failure can be the best instructor; in the NAMTS trades, this is done under the watchful supervision of master craftsmen.

While NAMTS primarily uses this time-tested learning method to train Sailors and develop them into Maintenance Warriors, the program also enhances the hands-on skills through the use of Virtual Task Trainers (interactive 3-Dimensional simulations) and Job Performance Aids (interactive videos). The assumption is that when the ship has routine maintenance to corrective maintenance to battle damage our NAMTS Warriors will be a first line of defense to keep their ship in the fight.

What does RIGHT look like?

While many of us want our Ships and equipment to perform well, look good and be in top material condition, these are not easy tasks to accomplish. Sailors are provided with Maintenance and Material Management (3M) Planned Maintenance System (PMS) Maintenance Requirement Cards (MRC) that define step-by-step instructions to execute maintenance tasks with no visual cues to what “right” looks like.

Likewise, do our chief petty officers and junior officers know what “right” looks like in order to conduct a proper and thorough PMS spot-check or a zone inspection? Do they recognize the critical elements of degrading equipment or compartments that are not properly maintained?

In 2003, during my turn-over process as a newly reported Chief Engineer of a big-deck Amphib, I asked to conduct a PMS Spot-Check. When the time came, a petty officer escorted me to his work center and started with a demonstration of validating the MRC against the 43P1 which ensures he was using correct MRC. I realized then that the maintenance check was to test a battle lantern and noted this young Sailor was merely performing routine and practiced responses to a paper form. When asked where his leading petty officer and chief were, he simply stated that he didn’t need them for this and I was now convinced that the Sailor was doing what he and his supervisors thought was right. I told him he did fine and then addressed the situation with the division officers and department chief petty officers. If spot-checks are not probing and meaningful, then they are a waste of time.

A few days later, we had our first zone inspection onboard and when it was complete, I asked for all the Zone Inspection discrepancy lists. I found there were only about 25 discrepancies written down for the entire ship and many spaces had no discrepancies at all. I asked why there were so few discrepancies and was told all the hits were already on the Current Ships Maintenance Project (CSMP). It was now apparent that a recalibration of what the material readiness standards for this ship should be as zone inspections and material readiness are serious business and many of the Chiefs and officers were going through the motions of walking the spaces rather than seriously looking for things that were not ship-shape.

Working with the XO, we held training with all officers and chief petty officers on what to look for and what the standards are. I also sat with every department head, their division officers and chief petty officers and reviewed their CSMP for accuracy and found hundreds of garbage jobs. The CSMP was not a Current Ships Maintenance Project it was a repository for all the jobs that would never get done. We then pulled the Naval Safety Center check lists from their website for material readiness and created an accurate CSMP by documenting everything that was not full-up-round in accordance with the technical references listed on the check lists.

Now, as a leader of NAMTS and MATs conducted by RMC, Sailors and civilians, our focus is on improving material readiness by teaching Sailors what “right” looks like and “right” is always in accordance with approved technical documentation.

If we are going to steam our ships into harm’s way we need to have ships and crews at peak readiness. Material readiness is an all hands evolution that starts with knowing what “right” looks like and identifying, documenting and repairing minor problems before they become major or catastrophic problems.

NAMTS “Learning by Doing”

By Daniel Spagone, NRMC C900

Parents sit in the passenger seat while their teenager tries out the driver's seat for the first time. It's nerve-wracking, but parents do it because they know there's no better way.

It's difficult and time-consuming to use apprenticeship training in mass education, so instead of allowing students to learn by doing, we use courses of instruction to teach students the theory of the skill without the practical application and at times, the classroom instruction is presented by someone who has never performed the tasks themselves.

A successful Vocational Technical Trades school uses the most effective learning method, learning by doing. To learn and become proficient in repairing a valve, manufacturing a hydraulic hose, repairing a heat exchanger, bending pipe, or simply painting a bulkhead, you must physically experience doing it. Throughout history, people developed professional skills this way, progressing from apprentice to journeyman to master craftsmen meant you experienced and became proficient in a trade. NAMTS leaders understand that learning a skill means trying your hand at the skill. Most importantly, when there is no real harm in trying and failing, we allow and encourage apprentices to give it a shot as failure can be the best instructor; in the NAMTS trades, this is done under the watchful supervision of master craftsmen.

While NAMTS primarily uses this time-tested learning method to train Sailors and develop them into Maintenance Warriors, the program also enhances the hands-on skills through the use of Virtual Task Trainers (interactive 3-Dimensional simulations) and Job Performance Aids (interactive videos). The assumption is that when the ship has routine maintenance to corrective maintenance to battle damage our NAMTS Warriors will be a first line of defense to keep their ship in the fight.

What does RIGHT look like?

While many of us want our Ships and equipment to perform well, look good and be in top material condition, these are not easy tasks to accomplish. Sailors are provided with Maintenance and Material Management (3M) Planned Maintenance System (PMS) Maintenance Requirement Cards (MRC) that define step-by-step instructions to execute maintenance tasks with no visual cues to what “right” looks like.

Likewise, do our chief petty officers and junior officers know what “right” looks like in order to conduct a proper and thorough PMS spot-check or a zone inspection? Do they recognize the critical elements of degrading equipment or compartments that are not properly maintained?
The importance of improving and modernizing the Navy’s Fiber Optic Technician skill set and overall Sailor knowledge of fiber optics is at an all-time high due to the rapid increase and reliance in fiber optic technology aboard its ships.

New ship designs are being outfitted with fiber optic backbones and current models are being back-fitted to accommodate modern fiber optic systems, which is why the Naval Fiber Optic Technician is in demand. Creating well-rounded technicians involves training Sailors to the skill level where they have the ability to demonstrate knowledge and skills from fiber optic fundamentals and more advanced activities such as the prepping of the fiber optic cable, tipping the connector, testing the fiber system, troubleshooting any system errors found during testing, and carrying out necessary system repairs.

CNRMC’s NAMTS Program is currently collaborating on an I-Level Maintenance Fiber Optic training initiative with Naval Surface Warfare Center Dahlgren, Va., the Navy’s Fiber Optic Technical Warrant Holder. This I-Level fiber optic training, due to roll out in late 2017, will provide the hands-on maintenance-based training for Sailors who will be performing repairs, supervising installations, or inspecting fiber optic systems. This training will ensure Sailors are using the Navy’s standards-based methods, that they can recognize Navy-qualified/approved fiber optic components and contribute to unit self-sufficiency.

With the influence of fiber optics extending far past communications/networking systems and being connected to many navigation systems, weapons systems and engineering plant equipment, it is essential that all Sailors have a basic knowledge of the limitations of fiber optic cables and components.

Fiber Optics 101 for All Hands

- Before reconnecting, a fiber technician should clean and scope connector ends.
- Do not use any small hand tools to disconnect fiber cable connectors. Pliers or other hand tools can slip and damage the individual leads.
- Never use zip ties to secure fiber cable. It is recommended that Velcro wraps be used as zip ties can be over tightened and crush the fibers inside the cable.
- Do not tightly loop (“pig tailing”) a fiber cable. A safe rule of thumb is to never bend the cable or the individual leads more than 90 degrees.
- Never ever allow any fiber connector or cable to rest on the deck. Stow it loosely up and out of the way. Stepping on a fiber cable can break the glass, which may require replacement of the cable.

Example of hand tool damage. *(Photo by Gabrielle Chuchro)*

Example of a pig tail that damages fiber cables by coiling too tightly. *(Photo by Gabrielle Chuchro)*
NAMTS IPE Boosts I-Level Capabilities Around the Globe

Every day, the Navy Afloat Maintenance Training Strategy (NAMTS) program forges maintenance warriors. An essential part of this process and the primary purpose of the NAMTS Industrial Plant Equipment (IPE) and the Production Equipment Specialists’ (PES) is to ensure NAMTS Sailors have the tools and equipment necessary to fully accomplish their Job Qualification Requirements (JQR) as they pursue the Navy Enlisted Classification (NEC) codes. Standardizing equipment across the enterprise, as well as providing Sailors with access to emerging technologies, make up two critical functions of this program.

The year 2016 saw the program take four projects from the planning phase through the execution phase. Each Regional Maintenance Center (RMC) received an OMAX Waterjet Cutting Table valued at $350,000 each, which substantially increased production capabilities at each location. It took only one (1) month to place, build and test the new water jets, as the PES managed the rapid turnaround for the major plant equipment installation. The water jets have exceeded expectations thus far, and the PES fully expects this trend to continue into 2017 and beyond. Forward Deployed Regional Maintenance Center (FDRMC) Detachment Bahrain will be the next facility to receive a waterjet in 2017.

PES Managed the Phone System Upgrade in support of NAMTS and RMC Production

The PES planned and executed a major project which involved procurement and installation of a new phone system for the Mid-Atlantic Regional Maintenance Center (MARMC). MARMC provides telecommunication services for approximately 3,000 Officers, Sailors, government employees, and contractors who provide NAMTS training and valuable immediate technical assistance for shipboard personnel, support global fleet maintenance requests, and respond to emergent repair requests for ships.

The old Mitel 2000SX phone system was well past the end of its life and was prone to frequent losses of communication capability, which translated to losses of NAMTS training, MARMC production work and degradation of operational readiness for the Fleet. These outages cost MARMC $13,000 per hour - a significant impact to MARMC’s operating budget. To mitigate the loss of communications, the PES began to pursue a solution using Avaya’s proven telecommunications equipment capabilities; these systems ensure long-term communications sustainability, reliability of the telecommunication infrastructure, and provide advanced information technology capabilities for the phone system.

In April 2015, Naval Sea Systems Command (NAVSEA) approved the Avaya phone system and allotted $3.65 million to facilitate replacement. Two years of planning culminated in the installation of the Avaya phone system, which commenced September 14, 2016, and will be complete in January 2017, when 3,486 phones in eight (8) different buildings are replaced. Southeast Regional Maintenance Center’s (SERMC) upgrade, the next site planned for telecommunications system overhaul, is currently slated for Fiscal Year 2019.

Restoration of Intermediate Maintenance Capability in Bahrain a Reality with IPE

The PES are also providing support to Commander, Navy Regional Maintenance Center’s (CNROMC) effort to establish a standalone Code 900 shop at FDRMC DET Bahrain. During a recent audit of FDRMC DET Bahrain, the tremendous potential of the FDRMC was realized when over 60 pieces of equipment were identified and inventoried. This equipment was cleaned, inspected, and placed into service to make intermediate-level maintenance in Bahrain a reality.

The CNRMC IPE Program Manager (PM) and PES relocated, restored and tested every piece of equipment in the warehouse, ranging from portable hydraulic presses, to a 20-ton vertical turret lathe that was so large, it was originally thought the lathe would have to be abandoned in place during the planned relocation of the shop in 2018.

With very limited resources and support, the IPE PM and PES have been able to convert a storage warehouse into a fully functional C900 shop. Accomplishment of the warehouse conversion was not limited to performing equipment inventory and restoration; standing up the shop included implementing programs such as Lockout / Tagout, Preventative Mainte

(Continued on page 10)
(Continued from page 9)

nance, and countless others, vital to ensuring the newly-created intermediate maintenance support facility would function in a remote location with minimal logistical support.

To support the logistics requirement of the shop and associated installed facilities, approximately 10 tons of pipe, bar stock, and angle iron were relocated, in most cases by manual labor. Movement of this large quantity of material was performed in a warehouse that often exceeded 110 degrees Fahrenheit, with no available air conditioning. All safety precautions were taken to ensure no personnel suffered heat stress injuries, enabling this tiring task was to be performed quickly; readiness of the Detachment in Bahrain for maintenance requests was assured.

Every consumable and hand tool in the warehouse was organized and inventoried as well. The capabilities of FDRMC DET Bahrain have greatly increased, and will continue to increase, as new equipment to stand up a flex hose shop is received and installed.

IPE Efforts Across CNRMC Ramping Up in 2017

In 2017, the production equipment specialist will have an additional six IPE projects that will be ready for installation. Each RMC will receive diesel test stands in the first quarter of the year. These test stands will be capable of providing test services to multiple engine platforms throughout the fleet, increasing capabilities at all RMCs tenfold. SERMC will receive a much-needed Blast Booth in their corrosion control shop.

Southwest Regional Maintenance Center (SWRMC) will get a fluidized bed coating system which is a new technology that will revolutionize the way the Navy preserves ship’s doors and louvers.

The IPE program is growing at an exponential rate. Over the next five years, the PES will submit requests to NAVSEA to fund over $43 million worth of projects and require an additional PES to be added to the ranks in September 2016 to adequately support the program’s expanding role in seeking out and providing the tools required to forge the Navy’s maintenance warriors.
The Navy Afloat Maintenance Training Strategy (NAMTS) improves maintenance knowledge for Sailors stationed at maintenance facilities and onboard aircraft carriers and large deck amphibious assault ships.

As the aircraft carrier USS George H. W. Bush (CVN 77) completed her shipyard availability, another change was taking place below decks. Ensign Jason Mozer, BMC (SW/EXW) Bo Miller, and MM1 (SW) Joshua Spalding were assigned as the Command NAMTS Job Qualification Requirements (JQR) Coordinators. NAMTS, once a slow moving, underutilized program, has been brought to life and is operating at peak performance thanks to the new leadership onboard and Mr. Kevin Bond’s (East Coast Afloat NAMTS Coordinator) steadfast devotion to training Sailors.

As the command began the extremely difficult transition from shipyard life to operational life, the outstanding leadership onboard Bush recognized that development of competent and confident maintenance warriors to complete shipboard I-Level maintenance and repairs is critical to successful mission accomplishment. As a result, the NAMTS program has become the cornerstone for training Bush Sailors, resulting in enrollment of 73 additional Sailors in eleven different JQR’s.

Currently, Bush has 81 Sailors enrolled in eleven NAMTS skill areas: Air Conditioning and Refrigeration, Diesel Engine Repair, Heat Exchanger Repair, Hydraulic Repair Technician, Inside Electrical Repair, Outside Electrical Repair, Pipefitter, Pump Repair, Rigger Weight Tester, Valve Repair, and General Shipboard Welder/Brazer.

USS Bataan (LHD 5) has taken charge and after just one month as an established NATA, Bataan has thirteen (13) Sailors enrolled in three NAMTS JQRs, Inside Machinist, Interior Communications and Rigger/Weight Tester. The command is excited, as are the Sailors, about having the ability to train and be awarded NAMTS NECs, but more importantly, significantly improving their self-sufficiency at sea.

Currently, the ship has Sailors enrolled in Inside Machinist, Interior Communications Technician, and Rigger/Weight Tester JQRs.

USS Iwo Jima (LHD 7) continues to be the east coast standard-setter for a successful Afloat NAMTS program. Following successful completion of all trials and following extended shipyard availability, the ship deployed for a humanitarian relief mission in Haiti. Through all operational demands, the ship continues to show that NAMTS is a top training priority.

Thirty Sailors are enrolled in seven (7) JQR’s, and to date, the ship has two (2) personnel who have completed the Valve Repair JQR. Additionally, seven (7) Sailors are ready for post-tests, and seven (7) more personnel have completed greater than 75% of their chosen JQR. The ship’s XO stated, it’s all about “Quality, not quantity” it is clear watching these Maintenance Warriors in action that quality is their number one priority.

USS Wasp (LHD 1) is overcoming obstacles while in upkeep to ensure its NAMTS program continues to develop Sailors after its initial establishment. To date, the ship has five Sailors enrolled in two NAMTS JQRs, Inside Electrical Repair Technician and Pipefitter. Wasp intends to enroll more Sailors into the program and expand training to the Rigger/Weight Tester, Watertight Closure Maintenance Technician and Valve Repair Technician JQRs.

During the current extended maintenance availability, maintaining the NAMTS program can be a daunting task. Aboard USS Abraham Lincoln (CVN 72), MMC (SW) Antonio Hutchinson, the Command JQR Coordinator, has taken the job seriously and has motivated his candidates to accomplish as much as possible during the availability.

Hutchinson coordinated and established collaboration with MMC (SW) Walter Blackburn, leading chief petty officer, Valve Shop, Mid-Atlantic Regional Maintenance Center, to get his enrolled sailors training.

(Continued on page 11)
His efforts have encouraged the personnel enrolled to make steady progress towards completion of their JQR, and has ensured quality training is being accomplished. USS Abraham Lincoln has seven personnel enrolled in and actively pursuing, the Valve Maintenance JQR.

Upon returning from deployment in July, USS Kearsarge (LHD 3) didn’t miss a beat getting right back into the fight. Although the ship was moved to BAE Shipyard less than one month after returning from deployment, the exceptional leadership in the Training and Engineering departments recognized an opportunity to personally develop their Sailors.

Starting their NAMTS program was a top priority and giving every Sailor onboard the ship an opportunity to learn, the ship immediately enrolled forty six Sailors in ten different JQR’s. The ship currently has personnel enrolled in AC&R, Diesel Engine, Heat Exchanger, Hydraulics, Inside Electrical, Outside Electrical, Outside Machinist, Pump Repair, Valve Repair and Watertight Closure.

Maintaining the program, while in a shipyard availability, can be a difficult task, however, USS Kearsarge has maintained 100% active participation monthly since being established as a NATA in August 2016.

As USS Nimitz (CVN 68) completes her current availability, MMC (SW/EXW) Dave Petersen, NAMTS Command Job Qualification Requirements (JQR) Coordinator, strives to help the command maintain a positive focus on the NAMTS program. This is, however, extremely challenging as the crew changes mission focus from repair and maintenance to operations.

The ship, in concert with Intermediate Maintenance Facility (IMF) Bangor’s Regional NAMTS Coordinator, Ms. Sandra Hinz, has implemented the Outside Machinist JQR. Sailors from these commands now have the ability to participate in the JQR, which will afford each command a broader base of self-sustainability in maintaining and repairing equipment associated with the Outside Machinery Repair Shop for their respective commands.

The ship currently has fifty-nine Sailors enrolled in ten (10) NAMTS JQRs: Hydraulics Repair, Inside Machinist, Interior Communication, Outside Electrical Repair, Outside Machinist, Pump Repair, Rigger/Weight Tester, Shipfitter, Valve Repair, and Watertight Closures Maintenance Technician.

Despite transitioning into their operational schedule, upon completion of a demanding Planned Incremental Availability, the ship will continue to work diligently to maintain the high bar they set as the pilot afloat program.

During the current extended maintenance availability, USS Theodore Roosevelt (CVN 71) Sailors have embraced a quote from the ship’s namesake, “Nobody cares how much you know, until they know how much you care.”

NAMTS has exploded onboard, with forty crewmembers enrolled into the program since implementation. MM1 (SW) Christopher Willard, the Command JQR Coordinator, continues to display professionalism, knowledge, and care with respect to NAMTS onboard.

Maintaining the program while in a Planned Incremental Availability (PIA) can be an exhausting task; however, Petty Officer Willard has taken the job seriously and has motivated his candidates to accomplish as much as possible during this availability. His efforts encouraged personnel to complete the assigned JQR tasks, and four Sailors are now ready to take their post-test prior to completion of the ship’s PIA.

Job Qualification Requirements (JQR) implemented onboard include Air Conditioning & Refrigeration (AC&R), Hydraulics Repair, Outside Electrical Repair, Pump Repair, and Valve Repair.

Additionally, Theodore Roosevelt is the first carrier to enroll Reactor Department personnel into the program, with seven nuclear qualified Sailors enrolled in the Valve Repair JQR has proven her crew has the ability to raise the bar to the next level.

While completing underway periods and preparing for an upcoming extended maintenance cycle, there are unique challenges that a carrier must support. Even the ship’s normal routine can be quite overwhelming. Nevertheless, HTC (SW/AW) Jeremy Houske, the NAMTS Command JQR Coordinator, continues to display professionalism, knowledge, and care with respect to NAMTS onboard.
Coordinator, continues to elevate NAMTS to a higher level onboard USS John C. Stennis (CVN 74).

In addition to seven Job Qualification Requirements (JQR) implemented since NAMTS program deployment onboard John C. Stennis— including the Hydraulic Repair, Inside Machinist, Outside Electrical Repair, Pipefitter, Shipfitter, Valve Repair, and Watertight Closure Maintenance JQRs, the ship has added the General Welder/Brazer JQR and is planning to implement the Interior Communications JQR as well.

The goal is to have as many of their Sailors as possible complete NAMTS qualifications by the end of the upcoming Planned Incremental Availability (PIA).

As with USS Nimitz, the ship is coordinating with Intermediate Maintenance Facility (IMF) Bangor's Regional NAMTS Coordinator, Ms. Sandra Hinz, to support the implementation of the Outside Machinist JQR. This will allow Sailors from both USS John C. Stennis and IMF Bangor to have the ability to participate in the Outside Machinist JQR, and will provide a broader base of self-sustainability in the maintenance and repair of outside machinery for these commands.

Welcome aboard USS Essex (LHD 2). Sailors started enrolling in December 2016 as the Essex wanted to provide her Sailors with a new opportunity to become more proficient in maintenance procedures and repairs. Essex is the first Large Deck Amphibious Ship on the west coast to implement the program with the implementation of the Rigger/Weight Tester JQR.

USS Arco (ARDM 5) is a medium-class drydock utilized for Selected Restricted Availabilities (SRA). Arco has a lifting capacity of 1800 long tons and is an asset for Submarine Squadron 11, operating under Commander, Submarine Force, U.S. Pacific Fleet at Naval Base Point Loma, Calif. There are 115 enlisted crewmembers onboard; of those, 101 are engineering-specific rates.

As there may be some downtime between each SRA, the command was looking for an avenue for their Sailors to do something different while still benefiting their Navy career. The command asked Mr. Larry Burns, West Coast Afloat NAMTS Coordinator, and Mr. Doug Scholl, Regional NAMTS Coordinator for Southwest Regional Maintenance Center, to come aboard and present the program to senior leadership.

The command wholeheartedly supports the program and is interested in implementing the Rigger/Weight Tester and Shipfitter Job Qualification Requirements (JQR). They will be adding more JQRs as the program grows, but wanted to start off small and then progress as their schedule allows.

DCCS (SW) Robert McCarty is the Command JQR Coordinator and his experience as a Damage Controlman, he is well-aware of maintenance requirements and understands how the NAMTS program will improve the maintenance capability of Sailors onboard USS Arco.

USS Boxer (LHD 4) is the second large deck amphibious assault ship on the West Coast to implement the program onboard. This was accomplished while overcoming all of the obstacles associated with going into availability. The biggest hurdle during upkeep is ensuring the NAMTS Program stays on track.

Since implementing the program in December 2016, the ship has eleven (11) Sailors enrolled in two (2) NAMTS JQRs, Rigger/Weight Tester and Valve Repair Technician. The ship intends to expand training to the Outside Machinist and Watertight Closure Maintenance JQRs.

Maintaining the program, while in an availability, is a difficult task and MMCS (SW/AW) Shawn Seabron, Command NAMTS JQR Coordinator, has taken the job seriously and is motivating his candidates to accomplish as much training as possible during the availability which will have a positive impact on Boxer’s mission readiness while being forward deployed.

Senior Chief Seabron is well aware of the task at hand and what it takes to complete a NAMTS JQR. He earned his Valve Repair NEC (95AB) while stationed at Norfolk Naval Shipyard and is ready to pass on that knowledge to his Sailors.

USS Harry S. Truman is working with the Afloat NAMTS Coordinator Mr. Kevin Bond, to implement NAMTS in February 2017. Truman will start with the Valve Repair Technician and Watertight Door JQRs and plan to implement more over the next year.
USS Dwight D. Eisenhower (CVN 69) did not let deployment prevent the ship from taking advantage of the NAMTS program. While deployed, EMC (SW) Valenzuela, Command NAMTS JQR Coordinator, and MMCM (SW/AW) Joseph, Engineering Department Master Chief, communicated via Email with the Mr. Kevin Bond, East Coast Afloat NAMTS Coordinator, to develop a command NAMTS instruction and enroll six Sailors into two NAMTS JQRs, Outside Electrical and Valve Repair. Now that the ship is back in homeport, the command has utilized the expertise of the Mr. Bond to conduct NAMTS program training, indoctrination, pre-examinations in support of enrolling additional Sailors into four other NAMTS JQRs, Watertight Closure Maintenance, Inside Machinist, Pipefitter, and Shipfitter.

For USS Carl Vinson (CVN 70), maintaining a NAMTS program, while in a Planned Incremental Availability (PIA), was a daunting task but HTC (SW/AW) Kagen Huebner took the job seriously and motivated his candidates to accomplish as many tasks as possible during their availability. While the ship was transitioning into their operational schedule, Chief Huebner turned the program over to the new Command NAMTS JQR Coordinator due to his impending transfer. MM1 (SW/AW) Derrick Henry accepted the reigns and is ready to take the program to the next level. Petty Officer Henry is eager to assist the Sailors participating in the program in order to complete their tasks and qualify as NAMTS technicians.

The ship is currently on a Western Pacific deployment and has fifty two Sailors enrolled in ten (10) NAMTS skill areas. The following JQRs are implemented onboard: Air Conditioning and Refrigeration, Heat Exchanger Repair, Hydraulics Repair, Outside Electrical Repair, Outside Machinist, Pipefitter, Pump Repair, Rigger/Weight Tester, Shipfitter, and Valve Repair.

USS Emory S. Land (AS 30) awarded its first NAMTS NEC to HT2 (SW) Michael Willson in November 2016. This is quite a milestone for AS-39’s NAMTS team which has only been established since April 2016. It is no surprise that AS-39 quickly got on step as the command has universal support for the program from the Commanding Officer on down. In his exit questionnaire, Petty Officer Willson responded to the question; Do you believe that NAMTS training would prove beneficial in preparing for Navy-Wide Advancement Exams? Why or why not? He stated “When studying for the shipfitter test, I learned about things that I never knew before, and I believe, helped me make first class”. Great start for Emory S. Land.

November 2016, USS Frank Cable (AS 40) awarded it first NAMTS NEC since November 2013. HT1 (SW) Brian Kabisch earned his shipfitter NEC proving that NAMTS training at one learning center is transportable to another. Petty Office Kabisch completed all of his requirements for the shipfitter NEC at Portsmouth Naval Shipyard Detachment (PNSD), Point Loma except for his post test and oral board. After his arrival onboard his training records were transferred to AS-40’s NAMTS program where he continued his training and successfully completed the NEC requirements. The Afloat NAMTS Coordinator, Mr. Jim Heffelfinger said. “I have to say, after leaving his board today there was a buzz in the air about the NAMTS program”. That buzz translated into another NEC being earned by EM3 Bianca Mendoza who earned her Outside Electrical Repair NEC on January 24, 2017. The NAMTS program boilers are lit and steadily building up to a full head of steam - great things are ex-
Machinist Mate 1st Class (Surface Warfare / Air Warfare) Mi Tang is a native of China and immigrated to the United States at the age of 21.

In December 2008, he enlisted in the U.S. Navy as a Machinist Mate and served onboard three ships, USS Dubuque (LPD 8), USS Bonhomme Richard (LHD 6), and USS Essex (LHD 2) prior to reporting to Puget Sound Naval Shipyard and Intermediate Maintenance Facility (PSNS & IMF) Detachment Everett in 2014.

Upon reporting to PSNS & IMF Detachment Everett, he hit the ground running and led the valve shop in the completion of 210 repairs. In May 2015, he completed his first Navy Afloat Maintenance Training Strategy (NAMTS) certification in pump repair and earned the Navy Enlisted Classification (NEC) Code 4227 (Pump Repair Technician). Always improving, he completed his second NAMTS in October 2015, in valve repair and earned the NEC 95AB (Valve Repair Technician). Without hesitation, he immediately commenced a third NAMTS NEC qualification to increase his own level of knowledge and shop capabilities. In June 2016, he earned the NEC 4229 (Heat Exchanger Repair Technician).

Petty Officer Tang said “NAMTS has a lot of detailed training that relates to the questions on the first class exam. How to perform pump maintenance, how to overhaul pumps with tolerances and pump alignments. It really helped.”

While enrolled in this third NAMTS, Petty Officer Tang attended the Refrigeration and Air Conditioning Systems Technician course, SWOS San Diego, graduating top of his class with a 99.4 percent academic average and earning NEC 4291.

As a NAMTS qualification signer, Petty Officer Tang has provided 286 hours of hands on training assisting in the qualification of 21 Sailors. His dedication to the NAMTS program spurred its success at PSNS & IMF Detachment Everett.

PSNS & IMF Everett Gas Turbine Shop News

The Intermediate Maintenance Facility (IMF) Everett Gas Turbine Shop 31T made great strides on NAMTS training thanks to GSCS (SW) Paul Haedt, who arrived at the command in July 2016. Haedt set up an exemplary training program using an LM2500 gas turbine to conduct training; he also shared a wealth of knowledge and expertise with the Shop 31T Sailors. His training program is in line with the NAMTS program and is being used to reinforce the Sailors’ knowledge while they certify in NAMTS.

The recent success for Shop 31T during the 7A1 availability aboard USS Shoup (DDG 86) is testimony to the quality of the training Haedt provides. The work involved the removal and installation of new compressor blades and a main gas turbine, plus total swap-out of the ship service gas turbine generator.
Haedt’s future goals for training include obtaining the rails for the LM2500. This will enable the Shop 31T Sailors to learn the importance of, and become familiar with, rigging the main gas turbine through the ship’s plenum intake.

IMF Everett Expanding NAMTS Training Opportunities Afloat

The NAMTS program is providing Sailors aboard USS Gridley (DDG 101) with valuable training and opportunity. IMF Everett’s NAMTS program has enrolled two Gridley Sailors into the Welder Brazier Job Qualification Requirements to earn NEC 4957. Primary training will take place at IMF Everett in Shops 26 (Welding) and 56 (Pipe shop), though additional opportunities may be available aboard Gridley during the 6C1 availability. The Sailors earning the NAMTS NEC 4957 will help fill the void for qualified welder braziers in the fleet by being able to use their knowledge to make minor repairs when needed while underway. Additionally, the NAMTS Welder Brazier JQR will provide valuable training and experience to help them succeed in the “C” school (advanced welder) for NEC 4955, which is a qualification in high demand. This NAMTS Welder & Brazier JQR and NEC are new to the Navy and will be instrumental in getting qualified Sailors out into the fleet to make repairs.

HTFA Anthony Erdmann and HTFN Kyle Hillenburg from USS Gridley have enrolled in the Welder Brazier Job Qualification Requirements to earn NEC 4957. Primary training will take place at IMF Everett in Shops 26 (Welding) and 56 (Pipe shop), though additional opportunities may be available aboard Gridley during the 6C1 availability. The Sailors earning the NAMTS NEC 4957 will help fill the void for qualified welder braziers in the fleet by being able to use their knowledge to make minor repairs when needed while underway. Additionally, the NAMTS Welder Brazier JQR will provide valuable training and experience to help them succeed in the “C” school advanced welder course for NEC 4955, which is a qualification in high demand. This NAMTS JQR and NEC are new to the Navy and will be instrumental in getting qualified Sailors out into the fleet to make repairs.

U.S. Navy Reserve Sailors Enroll in NAMTS

IMF Everett hosted a number of reservists October and November 2016. Three of them, all Electrician’s Mates, joined Shop 51 to gain valuable skills. “I am really excited to be here and feel like a part of the team and allowed an opportunity to do real work,” said EM1 (SW) Tara Haskins.

Haskins, along with EM1 (SW) Jeffrey Briggs and EM1 Hien Nguyen, enrolled in the NAMTS program to take full advantage of their time at IMF Everett, which couldn’t have come at a better time – a work order had come in to inspect and repair an aircraft electrical service station. This allowed the three reservists, along with active duty enrollee EM2 (SW) Alisa Barksdale, to gain valuable hands-on experience along with the NAMTS training.

HTFA Anthony Erdmann and HTFN Kyle Hillenburg from USS Gridley have enrolled in the Welder Brazier Job Qualification Requirements to earn NEC 4957. Primary training will take place at IMF Everett in Shops 26 (Welding) and 56 (Pipe shop), though additional opportunities may be available aboard Gridley during the 6C1 availability. The Sailors earning the NAMTS NEC 4957 will help fill the void for qualified welder braziers in the fleet by being able to use their knowledge to make minor repairs when needed while underway. Additionally, the NAMTS Welder Brazier JQR will provide valuable training and experience to help them succeed in the “C” school advanced welder course for NEC 4955, which is a qualification in high demand. This NAMTS JQR and NEC are new to the Navy and will be instrumental in getting qualified Sailors out into the fleet to make repairs.

"I am really excited to be here and feel like a part of the team and allowed an opportunity to do real work." — EM1 (SW) Tara Haskins, U.S. Navy Reserves

NAMTS-Trained Valve Repair Skills Valuable During Intermediate Maintenance Repairs

IMF Everett Shop 38 teammates are using the training from their NAMTS certification to inspect and test 96 deluge valves on USS Gridley (DDG 101) during the 6C1 availability. These valves are part of a fail-safe system for the vertical launch capabilities, so the NAMTS training and certifications are critical to the work.

Mr. Darren Axtell, MM1 (SW) Michael Graybill and MM2 (AW) Larry Parrish are the NAMTS-certified team members who worked on the overhaul which consisted of removing the valves, then cleaning, inspecting, measuring and recording valve pieces and parts. The teammates then replaced or repaired the valves as necessary and re-assembled them before performing hydro testing on each valve to ensure watertight integrity.

Graybill and Axtell, along with MM1(SW) Daniel Mcilvain, also recently conducted NAMTS training with Sailors from USS Sampson (DDG 102) and two embarked Navy reservists. The training focused on globe and gate valves. A total of 19 Sailors, over three days, received NAMTS training aimed at helping them become proficient at repairing gate and globe valves for general shipboard maintenance.
Hull Technician 3rd Class Trenton Jorgensen, assigned to Mid-Atlantic Regional Maintenance Center (MARMC) completed his Navy Afloat Maintenance Training Strategy (NAMTS) certification and was recognized at a graduation ceremony held in Building CEP-200, September 29, 2016.

MARMC Commanding Officer, Captain Steven Stancy congratulated Petty Officer Jorgensen along with 22 other Sailors who earned their NECs.

“It is up to us to make sure that we always stay ahead of the curve with respect to training and NAMTS is one way to do that,” said Stancy. “Don’t stop at just one NEC, complete as many as you can while you are here. The training you receive here makes you more knowledgeable and self-sufficient in that particular skillset.”

While most of the 22 Sailors who earned their NECs received just one certificate, Jorgensen earned two. Jorgensen completed both the Pipefitter and Shipfitter NECs.

“I’m not surprised at all that Jorgensen earned two NECs simultaneously,” said Regional NAMTS Coordinator Jason Nofsker. “It takes personal dedication and he has it. He not only wants to be the best Hull Technician, he wants to be the best Sailor.”

MARMC Sailors enrolled in the NAMTS program receive on-the-job training (OJT) which assists them in gaining one or more of the 14 NAMTS NECs available at MARMC. MARMC Sailors are provided 18 months to complete their NEC; most are able to finish within a few months, giving them time to receive training in another area to potentially gain an additional NEC.

“While working in the Shipfitter Shop and almost finishing my NEC, I found out that I was moving to the Pipefitter Shop,” said Jorgensen. “The very next thing I did was go see the NAMTS Coordinator and enroll in the pipefitter NEC training. The two NECs took me about a year to complete. To me, it just made sense to pick up that NEC as well.”

These were Jorgensen’s first two NECs, but he has plans to add as many NECs as he can while on shore duty at MARMC.

“I’m currently enrolled and training to earn my valve NEC next, before I leave,” said Jorgensen. “Adding multiple NECs makes you more marketable to ships and commands. You also become a leader in your specific skillset, so I would highly recommend all Sailors enroll in NAMTS while on shore duty.”

NAMTS training is available to Sailors on shore duty at regional maintenance centers, intermediate maintenance activities or facilities, shipyards, aboard tenders, as well as those stationed on ships undergoing extended maintenance availabilities.

NAMTS JQRs/NECs available at MARMC include: Shipboard Calibration Coordinator, Gas Turbine Electrical, Gas Turbine Repair Technician, Heat Exchanger Repair, Interior Communications Repair, Inside Machinist, Outside Electrical Repair Technician, Outside Machinist, General Shipboard Welder and Brazer, Watertight Closure Maintenance Technician, Valve Repair Technician, Shipfitter, Pipefitter and Rigger/Weight Tester.
MARMC’s Department took delivery of their new OMAX Corporation Water Jet Machine on August 15, 2016. The water jet is housed in the Hull Division, where it will be used to cut various sizes of metal plate to perform ship repair jobs.

A water jet uses high pressure water combined with an abrasive grit called garnet grit as a cutting medium. The water jet can cut all types of metal and composites, woods, ceramics, tiles, stone, glass and even bullet proof glass. The only material that it cannot cut is tempered glass. The main components of the machine are the pump, controller (which is a Windows-based computer), table, cutting head and abrasive hopper which holds garnet grit which when combined with water at 60,000 pounds per square inch, provides a lot of cutting power.

“You can fit a 4-by-8 foot sheet easily on this machine,” said OMAX Field Service Technician John Allen. “This size of machine was designed to accommodate the size and scope of work done in MARMC’s Hull Division.”

The water jet was delivered, assembled and set up by an OMAX specialist. Next an OMAX Applications Specialist provided a week of training to Hull Division Sailors and civilians.

“With the training process, obviously we want to start out with the basics,” said OMAX Applications Specialist Tim Holcomb. “We want to take them from the beginning phase, where you may have a drawing or a file, all the way to the end. Usually it takes me a couple of days to get them to the point of cutting but these Sailors are already there on the first day. As we move forward, I’m going to give them more advanced training. When I leave I want these Sailors to have all the proper tools so they feel comfortable using this machine. These Sailors know their stuff, so I have no doubt they will be fine. We want to teach them to be trainers on this water jet instead of operators.”

Understanding the many uses of the water jet is pretty hard to put into words, but it is a very advanced machine that will greatly impact not only the quantity of work, but also the quality.

These machines are very versatile compared to other Computer Numerically Controlled (CNC) machines, explained Allen. “It won’t replace every machine, but it can do things that other machines do. For example, a CNC plasma cutter may make faster cuts depending upon the metals thickness than this machine, but the water jet can cut its’ parts with no heat affected zones. The heat can change the properties of the metal, but with this machine, as soon as it’s done, you can immediately use the finished part. Plasmas or Lasers cannot cut glass, marble or wood, but the water jet has that capability,” said Allen.

MARMC Production Department is always looking for ways to be more efficient. The new water jet is the next evolution in cutting technology and MARMC is at the forefront.

“The speed, detail and accuracy in which this machine can cut different materials is going to make it the ‘go to’ equipment for the production department when it comes to cutting metal,” said MARMC Production Manager Derrick Mitchell. “It’s been a long time coming and we are happy to have it as a new capability.”

MARMC Sheet Metal Mechanics Bobby Fielder and Kenneth Ward look on with HT2 Joshua Weber as they go through the training program on the new water jet, August 30, 2016. (Photo by Chris Wyatt, Public Affairs Specialist)
Puget Sound Naval Shipyard and Intermediate Maintenance Facility (PSNS & IMF) Bangor has made several improvements to the NAMTS program at the command. IMF has added several new training aids, implemented two additional Job Qualification Requirements (JQRs) and added a dedicated Sailor to conduct optical laser alignment training for the Pump Repair and the Outside Machinist JQRs. These additions will provide the much needed resources to continue excellent training and build a more diverse program for Sailors at the command.

“The NAMTS program is one of the best tools to help Sailors become the best at their jobs while out to sea and even at their shore facility. How, you may ask? It's through hands-on training from those who have experience and dedication to making our Sailors the best they can be,” said MMC (SW/AW) Larry Abram, with shop 38C. His Sailors will be participating in the new JQRs.

PSNS & IMF Bangor recently acquired several new training aids and mock-ups for the NAMTS program from decommissioned frigates Ingraham and Ford. These include a vane pump and motor which can be utilized for the Hydraulics JQR as well as the closed coupled alignment section of the Pump Repair JQR; an air-reducing valve and Leslie valve to benefit the Valve Repair JQR; and a sliding spool valve and a bladder-type accumulator for the Hydraulics Repair JQR. The retrieval of these items come at a cost savings of approximately $16,500 and will give Sailors valuable training on items not readily available.

The reestablished Outside Machinist JQR and newly developed General Shipboard Welder/Brazer JQR are top fleet priorities and provide additional opportunities for Sailors, creating a broader and more diverse program.

Regional NAMTS Coordinator, Sandra Hinz, stated that, “due to the nature of the work at Bangor, some of the required items are not available for the Outside Machinist JQR but are available on surface ships. The IMF NAMTS team has partnered with USS John C. Stennis (CVN 74) and USS Nimitz (CVN 68) to provide the training and skills needed by our Sailors. This partnership has enabled our Sailors to enroll in a JQR that hasn’t been previously available, and it also allows carrier NAMTS Sailors to share in the use of Bangor training assets.”

The optical laser alignment process is not a frequently utilized process at the command, and it is a requirement for the Pump Repair and Outside Machinist JQRs. To develop a sound training process, the command located a school that provides in-depth training on the laser alignment method and MM1(SW) Jose Saavedramora was selected to attend the training based on his previous experience and knowledge of the process.

“As mechanics, this will help us extend the life of the pumps and minimize the cost of repairs,” said Saavedramora. He developed specialty training that covers an overview of the equipment, steps for safe operation, and the use of mock-ups to allow Sailors to see how everything is set up. Each Sailor gets a chance to perform all the necessary functions as many times as needed to become comfortable, knowledgeable and proficient with the process.

MM2 Aaron Westre said he never had an opportunity to utilize a laser before and hopes to take this experience to the fleet. “I learned the importance of laser alignment and how to do it the right way,” he said.

As the NAMTS program evolves and grows, so must the command. PSNS & IMF Bangor has done an exceptional job of finding solutions and alternate avenues to ensure the training Sailors receive is of the highest quality, from mock-ups of limited availability equipment and components to working hand-in-hand with other local commands.
Southwest Regional Maintenance Center (SWRMC) contributed to the upsurge of repair capabilities onboard various fleet units home ported and also to those visiting San Diego. Sailors, who obtain their appropriate NAMTS NECs, increase their ability to conduct critical repairs, technical support, and training.

This rise in I-level maintenance really shows the benefits of the NAMTS program and what it can provide in the future for Sailors going back to sea duty.

The NAMTS program provides on-the-job training in multiple areas of Sailors' Navy Occupational Specialty codes and gives them the opportunity to learn or enhance their skill sets. Improving a Sailor's shipboard maintenance and repair skills are paramount. This valuable training allows Sailors to complete a multitude of tasks at their next commands, whether on Sea Duty or Shore Duty.

SWRMC's Outside Electrical shop is leading the way in the NAMTS program by holding bi-weekly classroom sessions delivered by EM1 (SW) Jason Reyes and EM1 (SW/AW) Matthew Connelly to those enrolled in the program. Classroom training ensures enrollees are getting the proper knowledge not offered while doing the on-the-job training. This consistent training led to more than 40 Outside Electrical NAMTS qualifications throughout the command over the past year. This was accomplished by incorporating various training devices into the training curriculum such as a fully functioning Lab Volt trainer, Cableway Inspection trainer, and Window Wiper control display.
WRMC originally purchased an interactive Lab Volt trainer for its Civilian Apprentices and it has been incorporated into the NAMTS training routine. The lab allows the facilitators to teach Low Voltage Release, Low Voltage Protection, and Low Voltage Release Effect using real-time motor controller components.

NAMTS Outside Electrical NEC holders are the subject matter experts used to accomplish various jobs onboard the ships. NAMTS also plays a crucial role within various other programs at SWRMC such as Electrical Maintenance Assist Team (ELMAT) and Planned Maintenance Availability (PMAV).

When a Sailor is qualified with the NAMTS NEC, it allows them to pass down the knowledge to other Sailors at various commands on the waterfront, not only to help them better understand their source rating at their command, but also to improve shipboard repair capabilities especially while away from homeport or deployed. ELMAT uses the knowledge obtained from the Outside Electrical Repair NAMTS NEC to help Sailors understand inspections and how to overcome challenges they might face when preparing the ship for inspections. ELMAT can play a huge role on any class of ship, since a visiting team can bring the training resources onboard and assist ship’s force in conducting preventive and corrective maintenance. Littoral Combat Ship (LCS) Preventive Maintenance Availability (PMAV) is also benefiting from Sailors armed with the Outside Electrical Repair NAMTS NEC. Knowledgeable and NAMTS-qualified technicians ensure equipment maintenance is done with first-class quality, while assigned to accomplish multiple checks onboard LCS class ships during every availability.

Overall, the NAMTS program not only provides training and an NEC to those who accomplish it, but also helps the fleet by training Sailors to be more effective at their jobs. On-the-job training will help those Sailors apply everything they learn in the classroom and see how it is applied in the real world.

There is no doubt that attaining a NAMTS NEC, Sailors can leave their parent command with better knowledge about their rates. Sailors, who depart SWRMC with one or more NAMTS NECs have the opportunity to effectively fill various positions at their command. NAMTS Sailors are allowing commands to become more self-sufficient when deployed to sea, therefore improving the Navy’s overall mission readiness.

BRUNO ZULU to the SWRMC NAMTS team!

SWRMC significantly increased NAMTS graduates over their previous year total by awarding NAMTS NECs to 221 Maintenance Warriors in 2016, a 274% increase over 2015.
The Navy has a long history of using Diesel Engines to power ships. The first surface ship to use diesel power was USS Maumee (AO 2), commissioned in 1916. Supervising the installation of diesel engines onboard was none other than the Executive Officer/Chief Engineer LT Chester W. Nimitz.

One hundred years later, diesel engines are still used for propulsion on some ships and small craft. Diesels are known for reliability and durability, but what happens when a diesel engine onboard a ship breaks down?

The Diesel Engine Shop (Code 931) at Southeast Regional Maintenance Center (SERMC) provides services and repairs to diesel internal combustion engines.

“Experience is the best teacher, and at SERMC we are teaching Sailors to learn and recognize the causes of engine trouble,” said Gregory Hermann.

Herman says, “Traditionally, most on-the-job training (OJT) is driven by workload, but the initiative of some Sailors here ensures the Sailors at SERMC have an engine available for training anytime.”

After receiving an engine from a Rigid Inflatable Boat (RIB) which was thought to be seized, Sailors in the Diesel Engine Shop teamed with the SERMC Pipefitter Shop to build an engine stand to hold the 5.9 liter 6-cylinder Cummins diesel motor.

“The engine stand fabricated by our Pipefitter Shop is mobile and is set up for training. We had already stripped the motor to the engine block, and we discovered it wasn’t seized. We’ll go through every system until it’s completely rebuilt,” said Hermann.

“RIBs operate in extreme and difficult conditions, so inspection and maintenance are critical to minimize casualties caused by internal failures,” said EN1 Robin Mosley.

“Our Sailors are gaining valuable experience learning how to fix and conduct preventive maintenance on a diesel engine widely used in the fleet. We encourage all of our Enginemen to become subject matter experts,” EN1 (SW) Staci Allen said.

After the completion of hands on training, Sailors can earn specialized NECs under the NAMTS program. Candidates are given a post-exam to test their knowledge of the equipment they have been working on. This is then followed by a final board certification process.

(Continued on page 23)
Forty-three Sailors at SERMC earned Navy Enlisted Classifications (NEC) September 1, 2016 through NAMTS with the Commander, Naval Sea Systems Command making the presentations.

Vice Admiral Tom Moore presented each Sailor with a certificate of completion during an awards ceremony, and stressed the importance of achieving the qualifications for both professional growth and to become more valuable to the fleet.

"I truly enjoy the opportunity to recognize outstanding Sailors who have completed an NEC through the NAMTS program," said Vice Admiral Tom Moore. “The experience gained here at SERMC will have an immediate, substantial impact personally and professionally for these Sailors, and when they return to sea after their tour, they provide valuable skills that help keep ships in the fleet operational.”

EN1(SW) Staci Allen said, “I can take the knowledge gained at SERMC back to sea, where I will be able to perform maintenance and repairs while underway, instead of having the ship to return to port.” Allen earned a Diesel Engine, Governor, and Injector Repair Technician NEC.

NAMTS is a professional development program that trains Sailors primarily in engineering and combat systems ratings to hone their skills through real-world experience.

“The NAMTS program is hands-on, meaning you have to demonstrate the knowledge to perform the required tasks,” said DC1 (SW) Fungai Diura of SERMC’s Watertight Door & Closures Shop. “It improves your skills and shows motivation for more challenging duty assignments.”

EN1 (SW) Staci Allen (Right) slowly turns the crankshaft as EMFN Jacob Pruett (Center) and EN3 Hannah Ybarra check the clearance inside the cylinder on a marine diesel engine. Sailors in the Diesel Engine Shop at SERMC repair and replace valves, pumps, compressors and control devices used with diesel engines. (Photo by Scott Curtis)

EN1 (SW) Robin Mosley (left) questions (left to right) EN3 Hannah Ybarra, EN1 (SW) Staci Allen and EN3 Raquel Alvarado on the different parts of a Cummins marine diesel engine at SERMC. Once trained, Sailors at SERMC clean, lubricate, adjust, test, and perform preventive maintenance on diesel engines. (Photo by Scott Curtis)
Few things are more valuable to the Navy than on-the-job training and real world experience with equipment maintenance and repair. Through NAMTS, that kind of training is exactly what Sailors stationed at Norfolk Naval Shipyard (NNSY) receive as they complete the processes necessary to earn a NAMTS Navy Enlisted Classification (NEC) in one of seven available skills.

The NAMTS program has three primary goals:

- Unit Self-Sufficiency
- Sailor Professional Development
- Post-Navy Workplace Development

By adhering to these goals and taking advantage of hands on training available at NNSY, the NAMTS program continues to prove its valuable importance to enhancing Navy maintenance initiatives and increasing Sailor readiness.

Former NNSY Sailor Utilizes NAMTS Training in Civilian Applications

In August 2016, Engineman First Class (SW) Mark Santos decided to leave the Navy after 13 years of service and use his naval experience and training to get a civilian job. Using his formal education credentials and NAMTS training qualifications NEC-4340 (Diesel Engine-Governor & Injector Repair Technician) on his resume, he was quickly hired by Dann Marine Towing Company, a family owned and operated tugboat business with 20 ocean going tugboats and inland push boats.

Dann Marine Towing Company specifically hired Mark to be the Chief Engineer for main propulsion and diesel auxiliary systems for one of its vessels. Very soon after coming onboard, he would prove his value.

During his first hitch onboard tugboat M/V Carolina Coast, Mark experienced an engine room casualty that tested his Naval experience and NAMTS training in real life.

While transiting through the Gulf of Mexico, one of the Carolina Coast’s two Alco 251C diesel engines blew a jacket water pump; an essential engine component needed to keep the 12-cylinder turbodiesel engine cool.

With water spraying all over the engine compartment, Mark quickly took corrective action and secured the engine for repair at sea. Utilizing a spare jacket water pump onboard, Mark worked tirelessly for nine hours to repair the crippled engine. Through his efforts and hard work, the Carolina Coast regained the use of both main propulsion engines and completed its transit with no further incidents.

Interestingly, after reviewing past engineering logs for the Carolina Coast, it took a previous crew roughly 12 hours to replace the same engine component. With a faster repair time by three hours, this story is a true testament to the effectiveness of the NAMTS training program at NNSY.
“I never questioned my training or experience when my engine lost the jacket pump,” Mark said. “Before I left the Navy, I was given the skills necessary to handle repairs like this and it was especially through my NAMTS training that I got the hands on experience I needed to guide me through it.”

When asked what other NAMTS training skills would have helped him at his current position, Mark’s simply replied, “pumps and valves.”

Although Mark decided to cut his Navy career short, the NAMTS training he received at NNSY continues to pay dividends to his civilian career. Whether a Sailor is transferring to another command in the Navy or transitioning to the civilian world, NNSY continues to provide quality maintenance training to meet the primary goals of the NAMTS program.

“...it was especially through my NAMTS training that I got the hands on experience I needed to guide me through it.”

Mark Santos, NAMTS graduate
Great things are happening at Pearl Harbor Naval Shipyard & Intermediate Maintenance Facility (PHNSY & IMF) with the NAMTS program. Active participation, enrollment rates, and JQR availability are all continually increasing, with HRMC’s most recent implementations being the Interior Communications, General Shipboard Welder/Brazer and Rigger/Weight Tester JQRs with sixteen enrollments. The intent is to add more JQRs as the program grows and matures.

There are currently 68 HRMC Sailors, in nine skill areas, enrolled in the NAMTS program. Fifty-six have completed 100% of their JQRs and fifty-one Sailors have earned their NEC codes for completing the program with five more awaiting graduation. HRMC currently has the following JQRs online: Air Conditioning and Refrigeration; Diesel Engine Repair; Gas Turbine Repair; Shipboard Gage Calibration Coordinator; Shipboard Welder/Brazer; Shipfitter; and Watertight Closure Maintenance Technician.

Mr. Ed Yamashiro, the HRMC Regional NAMTS Coordinator, and MRC(SW) James Macasero, the Command JQR Coordinator, are both members of the PHNSY & IMF Workforce Development Team that is establishing a plan on the continued evolution of Learning Centers. The team is also entering into partnerships with other activities to leverage learning opportunities.

NAMTS Sailors are integral to PHNSY & IMF, performing Material Assist Team (MAT) work such as Watertight Door, Rigid Inflatable Boat (RIB), and Gas Turbine tasks. The Gas Turbine repair shop is always busy, the Boat shop is constantly working on Diesel Engines and RIB’s, the HT’s have been conducting door weld repairs and overhead projects for the Shipyards along with conducting their first door frame replacements.

USS Port Royal (CG 37) awarded Bravo Zulu (BZ) to HRMC for its Board of Inspection and Survey preparation job.

Members of the HRMC Watertight Door Maintenance Assistance Team include:

First Row (from the left): MM2 Amy Soto; MR2 (SW) Krystle Donato; GSM2 (SW) Mariacamilie Raymundo; MM3 Symonne Patrick; MM1 (SW/AW) Abi Olowo; MMFN Larry Louis; MM1 (SW) Frank Bouknight; HTC (SW) Harry Herradura.

Second Row (from left): HT1 (SW/AW) Casey Loepke; MM2 (SW/AW) Kevin Smith; MM2 (SW) Wyatt Kalbrener; MM2 Alexander Turner; HT2 (SW) John Stull; HTFN Cameron Rox; EN2 (SW) Jordan Alcantra; MM2 (SW) Terrance Tindal; MM2 (SW/AW) Carlo Abueg.

Not pictured are: MM2 (SW) Joseph Shelow; MM2 (SW) Wyatt Kalbrener; HT2 Kristian Ortega; HTFN Niaja Colleton

(Photo by STG3 Amie Craig)
NSSF New London Establishes a NAMTS Program

Commander, Naval Regional Maintenance Center welcomes Naval Submarine Support Facility New London (NSSF NLON) to the NAMTs team. NSSF became the first submarine shore command to stand up a NAMTS program in November 2016. Afloat NAMTS Coordinator Mr. Kevin Bond traveled to NSSF to indoctrinate the Sailors into the program and provide training to the NSSF NAMTS team on the requirements of program administration. During standup, ten (10) Sailors enrolled in Valve Maintenance JQR and NSSF plans to implement the Inside Electrical JQR in February 2017.

Captain Somlai, Commander, Regional Support Group Groton, stated that with the assembly of such an impressive leadership team he has 100% confidence that his Officers and Sailors will make NAMTS an incredibly successful program, while improving personal and professional development of all the Maintenance Warriors under his command.

USS Hopper (DDG 70) awarded a Bravo Zulu to Shops 31 and 38 (Gas Turbine) for the number 2B Gas Turbine Module Power Turbine Brake Job to:

- Mr. Gordon Kwok; GSCS (SW) Colt Schad; GSMC (SW) Toua Lor; Ms. Kanani Hawkins; Mr. Nelson Barboza; Mr. Nathaniel Malczon; Mr. Valerian Espinosa; GSM1 (SW) Remigio Toledo, GSM1 (SW) Jermaine Johnson, GSM1 (SW) Jermaine Piper, GSM1 Ediberto Chato, GSM1(SW) Antwan Griffin; GSM2 (SW) Kirubel Weldeyes, GSM2 (SW) Douglas Messamore, GSM2 Alvin Abellera, GSM2 (SW) Vicente Tan, GSM2(SW) Yue Chang, GSM2 (SW) Robertson Acido, GSM2 (SW) Francis Dechico, GSM2 (SW) Jose Alvarez, GSM2 (SW) Daniel Sanchez, GSM2 (SW) Joshua Wharton, GSM2 (AW) Michael Evans, GSM2 (SW) Nathaniel Doss, GSM2 Kenneth Pelaez, GSM2 Jessie Gandara, GSM2 (SW) Louis Stafford; and Mr. Ricky Lumang.

From the top:
First Row: Mr. Valerian Espinosa
Second Row: Mr. Nelson Barboza, GSM1 (SW) Antwan Griffin
Third Row: GSM2 Raúl Neri, GSM2(SW) Douglas Messamore, GSM2 (SW) Nathaniel Doss
Bottom Row – Ms. Kanani Hawkins, GSM2 (SW) Vicente Tan, GSM2 (SW) Francis Dechico, GSM2 Alvin Abellera.

(U.S. Navy photo by STG3 Amie Craig)

NSSF New London Establishes a NAMTS Program

HRMC (cont.) &
NSSF NLON Joins NAMTS
Calendar year 2016 proved to be a very successful year for the NAMTS program. 799 Maintenance Warriors were forged in 2016 which was a 54% increase in warrior graduations over the previous year.

The NAMTS Participation rates increased at the NAMTS Training Maintenance Activities from an FY15 average of 70% to an FY16 average of 85%. Enrollment rates increased from an FY15 average of 88% to an FY16 average of 96%. The transfer with NEC rate has improved from 77% in FY15 to 84% in FY16 with 363 Sailors transferring with an NEC in calendar year 2016.

As the NAMTS Program became more widely accepted as a viable and valued training solution, changes in Sailor eligibility were made to accommodate the requests for additional training. In 2016 Sailors who were previously excluded from the program were eligible to participate by formally changing the Navy Enlisted Manpower and Personnel Classifications and Occupational Standards, Volume II to allow Seaman (E-3) to be awarded NAMTS NECs. Also, nuclear-qualified and submarine qualified Sailors were granted permission by NAVSEA 08 and COMSUBFOR to participate in the program with four (4) nuclear-qualified Sailors earning their NECs. In November 2016, NSSF New London was officially stood up as a NAMTS training site and will be followed by USS Arco (ARDM 5), whose command leadership requested that NAMTS be established onboard to support training and qualifications of their enlisted engineers.

The NAMTS Afloat Training Activities increased from four (4) in 2015 to the current total of 16 with USS Boxer and USS Arco being the latest afloat commands established. Currently, there are 468 Sailors enrolled in NAMTS onboard afloat units with 62 of those Sailors being more than 75% complete with their qualifications and 12 earning their NECs in 2016.

As the program increased the number of training sites our technical support team recorded more than 11,000 data entries in CeTARS where NAMTS comprised nearly one third of the Navy’s available training courses.

Nineteen NAMTS JQRs underwent a review and reformattting in FY16, all JQRs were reviewed by subject matter experts with more than 1,900 comments being collected and adjudicated. Two (2) new JQRs were developed and approved for use in FY16 to support General Shipboard Welding / Brazing and Shipboard Calibration Coordinator. 2016 recorded 1,228 Sailors taking a pretest to enroll in the NAMTS Program and 831 post-tests being taken. In order to continue to validate the test bank of more than 6,300 questions the technical support team has created a restricted access online test portal where select subject matter experts can review the test questions for their respective JQR knowledge areas. This review process will continue into FY17 and all questions and references will be validated to the newly revised JQRs. Additionally, each post-test was personally reviewed by the proctor and the Sailor; test questions are continually challenged and validated against the listed references and current shop techniques.

The NAMTS Production Equipment Specialists provided excellent support to the NAMTS Program as well as Commander, Navy Regional Maintenance Center, as they firmly established their roles and capabilities in equipment management, procurement, and installation. The Mid-Atlantic Regional Maintenance Center phone system upgrade was a major success as they managed a project of more than $3,500,000.00 without incident or loss of communications. Additionally they supported the standup of Forward Deployed Regional Maintenance Center, Bahrain where more than 60 tons of equipment was relocated, unpacked, assembled and installed to working order. Support to Program Executive Officer, Aircraft Carriers was initiated to provide an on-site review of the repair equipment onboard that may support the Strike Group Intermediate Maintenance Activity. Other major pieces of Industrial Plant Equipment procured or approved for installation by the Production Equipment Specialists include three (3) 5-Axis Waterjet machines, three (3) six (6) inch pipe benders, four (4) diesel engine test stands and one (1) Fluidized Bed Powder-coating equipment, which will be the first fluidized bed installed in the continental United States.
PSNS & IMF Bangor, WA

NEC 4227—Pump Repair Technician
- MM2 (SW) Christopher Aguilar
- MM2 (SW/AW) Stephanie Faenza
- MM1 (SW) Nicholas Ferro
- MM2 (SW/AW) Jeremie Polk

NEC 4228—Air Conditioning & Refrigeration Technician
- MM1 (SW) Gregory Rochester

NEC 4541—Hydraulics Repair Technician
- GSM2 (SW) Albert Cristophe Comandante
- GSM2 (SW) Derrald Cranford
- GSM2 (SW) Brandon Jones
- GSM2 (SW) Ivonne Manus
- GSM2 (SW) Anthony Ritzdorf

NEC 4651—Outside Electrical Repair Technician
- EM2 Marvin Ambon
- EM1 Anthony Bowen
- EM2 (SW) Thomas Culberson, Jr
- EM2 (SW/AW) Linh Gurule
- EM2 (AW) Tori Sims

NEC 4652—Inside Electrical Repair Technician
- EM2 (SW) Anthony Black
- EM2 (SW) Terry Farley
- EM2 (SW) Russelle Galang
- EM2 (SW) Xingru Huang
- EM2 (SW) Joshua Hood
- EM2 Curtis Judah
- EM2 Matthew Kram
- EM2 (SW) Joseph Lewis
- EM1 (SW) Colton Redfearn
- EM2 (SW) Ryan Richards
- EM2 Peter Seam
- EM2 (SW) Mathew Strickland
- EM2 (SW) Ventru Vo

NEC 4911—Shipfitter
- HT1 (SW) Ivan Cofield
- HT2 (SW) Manuel Hernandez
- HT2 Jaycob Sealock
- HT2 (SW/AW) Tyler Sinclair
- HT2 (SW) Andrew Stewart
- HT2 (SW/AW) Gavin Templeton
- HT1 (SW) Adam Welchel

NEC 4952—Pipefitter
- HT2 Christopher Long
- HT1 (SW) Michael Delapaz

NEC 95AB—Valve Repair Technician
- MM1 (SW) Brian Calderon
- MM3 (SW) William McMillan
- MM1 (SW) Justin Okezie

PSNS & IMF Everett, WA

NEC 0121—Rigger/Weight Tester
- BM2 (SW) James Bare
- BM1 (AW) Marcus Solomon

NEC 95AB—Valve Repair
- MM2 (AW) Thomas Butters II
- MMC (SW/AW) Logan Cornett
- MR2 (SW/AW) Kirsten Bishop
- MMC (SW) Lyndon Mojica

NEC 4227—Pump Repair Technician
- MM2 (AW) Larry Parrish, Jr

(Continued on page 30)
(Continued from page 29)

PHNSY & IMF Pearl Harbor, HI

NEC 4228—Air Conditioning & Refrigeration Technician
 MMC (SW/AW) Steven Davis
 MM2 (SW) Alexander Turner

NEC 4340—Diesel Engine-Governor & Injector Repair Technician
 EN1 (SW) Daniel Neville
 EN1 (SW) Kosal Sim

NEC 4340—Diesel Engine-Governor & Injector Repair Technician cont.
 EN2 (AW) Jeremiah Soria

NEC 4140—Gas Turbine Repair
 GSMC (SW) Noe Medina
 GSM2 (SW) Douglas J. Messamore Jr.
 GSM2 Raul Neri
 GSM2 (SW) Joshua Wharton

NEC 4911—Shipfitter
 HTFN Ron Faison
 HTC (SW) Jason Hobson
 HT2 Cody Maccomber
 HT2 (SW) Christopher McSwain
 HT2 Kristian Ortega
 HT2 (SW) Megan Patten
 HT1 Clayton Smith

NEC 95AC—Watertight Closure Maintenance Technician
 DC1 (SW) Cesar Alvarez
 MM2 (SW) Ivy Ancheta
 IC1 (SW) Christopher Auker
 MM1 (SW) Todd Barrilleaux
 HTFN Niaja Colleton
 MM2 (AW) Cristita Esteban

(Continued on page 31)
GRADUATES
July—December 2016

(Continued from page 30)

NAMTS News 31 January 2017

GSM2 (SW) Jackye Nealy
GSM2 Jules Vincent

NEC 4406—Inside Machinist
MR1 John Archer III
MR3 Cottinda Bell
MR2 (SW/AW) Olga Lowers
MRC (SW/AW) Michael Martin
MR3 Alejandra Sanchez

NEC 4542—Outside Machinist
MM1 (SW) Erlindo Acob
MMFN Joseph Boncardo
MM2 (AW) Megan Crews
MM3 Daniel Petrovets
MMFN Mariah Stewart
MM1 (AW) Brian Wilkins

NEC 4651—Outside Electrical Repair Technician
EM1 (SW) Anthony Arias
EM1 (SW) Wiyao Awesso
EM1 (SW/AW) Yvonne Campbell
EM3 (SW) Katrina Deneui
GSEC (SW) Terry Gatlin
EM2 (SW) Gerald Goodlett
EM1 (SW/AW) Matthew Holland
EM1 (SW/AW) Miguel Hylton
EM1 (SW/AW) Fred Jones III
EMC (SW) Draper Loadholt
EM1 (SW) Marlon Noto
EM2 (SW) Kevin Organek
EM1 (SW) Aldo Rodriguez
EM1 (AW) Cesar Sanchez
EM1 (SW) Joshua Stanley
EM2 Adelina Steedly
EMC (SW) Daryle Urrea
EM2 Nicholas Watry
EM2 (SW) Michal Yeager

NEC 95AC—Watertight Closure Maintenance Technician
BMC (SW) Audrey Jernigan
GSMC (SW) Dwayne Williams

NEC 4229—Heat Exchanger Repair Technician
MM1 (SW/AW) William Durham
GM2 (SW) Modycar Ramirez

NEC 4911—Shipfitter
HTFN Abigail Booher
HTFN Kyera Burnell
HTFN Justin Cluff
HT2 (SW) Jeremy Davis
HT2 Joshua Davis
HTFN Christopher Daum
HTFA Joshua Denson
HT3 Mark Gardner
HTFN Cody Geary
HT3 William Hamner
HTFN Carlos Hernandez-Rivera
HT2 (SW) Tynesha Irons
HT1 (SW) James Irons, Jr
HT3 Trenten Jorgensen
HT3 Alexandra Kleist
HTFN Dylan Krupa
HT3 Conner Luby
HT3 Jack Malkiewicz
HT3 Joseph Mannino, Jr
HT3 Ronald Miles
HT3 James Minkoff
HT2 Alejandro Pacheco
HT3 Erick Perezbarazza
HTFN Clarissa Romero
HT2 (SW) Charles Sisnett
HT3 Sean Slagle
HT1 Colin Small

NEC 4952—Pipefitter
HT3 Jenia Arthur
HT2 Patrick Brosky
HT1 Michael Desanta
HT3 Devon Ford
HT1 (AW) Kyle Gregory
HT3 Lashavya Hixon
HT1 (SW/AW) Lisa Ingle
HT3 Trenton Jorgensen
HTFN Kaila Lane
HT2 Stephen Laroche

(Continued on page 32)
(Continued from page 31)

HTFN Damien Poole
HT2 (SW) Jacob Ralph
HTFA Joshua Ross
HTC (SW) Ryan Strawbridge
HT2 Ronald Williams, Jr
HT2 Andrew Yarrington

NEC 95AB—Valve Repair Technician
MM2 (SW) Fabiola Alexander
EN2 Autumn Ayer
ENFN Cacey Benton
MMC (SW) Walter Blackburn
EN2 (SW) Jonathan Boise
EN2 (SW) Charles Bouton
MM2 (SW) Darrell Cooper
MMN3 Jennifer Copelin
MM3 Stephanie Couvillon
MM3 Devon Dendy
ICSN Brett Dodak
MM3 (SW) Derek Ehlers
MMFN Serena Gonzalez
MM1 (SW) Tommie Grimes
MM1 (SW) Andrew Huhra
MM1 (SW) Justin Jenkins
EM1 (SW/AW) Fred Jones III
MM1 (SW) Reginal Jones
MM3 David Kamara II
MM1 (SW/AW) James Knowlton
MMN2 Ashley Leipold
MM3 Gregory Loving II
FC1 (SW/AW) Jaimee Maass
MMC (SW/AW) Jeffrey Mazanka
MM2 Anthony Miller
MM2 Raquel Rodriguez
MM2 (SW) Kyle Rogemoser
GSM1 (SW) Earnest Scott
MM1 (SW/AW) John Sikora III
MR3 Evan Smotherman
MMN2 Janelle Yurkiewicz

Norfolk Naval Shipyard (NNSY)

NEC 4227—Pump Repair Technician
MM3 Ross Crist
MM2 Bryan Haman
MM1 Darren McDuffie
MM2 Julian Seohanesacendra
MM1 (SW) Drake Smith

NEC 4340—Diesel Engine-Governor & Injector Repair Technician
EN2 Ronald Lovell

NEC 4911—Shipfitter
HT2 Daniel Allred
HT2 (SW) Kendrall Mays

NEC 95AB—Valve Repair Technician
MM2 Pedro Salvatierrareyes

Southeast Regional Maintenance Center (SERMC)

NEC 0121—Rigger / Weight Tester
BM2 (SW) Emmanuel Dixon
BM3 (SCW) Joshua Lewis
BM2 (SW) Alexa Macri

(Continued on page 33)
GRADUATES
July—December 2016

(Continued from page 32)

NEC 4140—Gas Turbine Repair Technician
- GSMC (SW) Winston Reynolds
- GSM2 (SW) Carla Williams

NEC 4145—Gas Turbine Electrical Technician
- GSE2 (SW) Anthony Acevedo
- GSE2 (SW) Derrick Ausberry
- GSE2 (SW) Michael Copelandclarke
- GSE2 (SW) Marcus Holben
- GSE2 (SW) Andrew Johnson
- GSE3 Jennifer Leiva

NEC 4227—Pump Repair Technician
- MM1 (SW) Raul Coronado, Jr
- MMC (SW) Ryan Davis
- GSM1 (SW) Jeremy Hammock
- MMFN Jessica Hewitt
- MMFN Richard J. Madrigal
- MMC (SW/AW) Juan Martinezjuarez
- GSM2 (SW) Taylor Tomlinson

NEC 4228—Air Conditioning and Refrigeration
- MM2 (SW) Marcelino Cotto, Jr
- MM1 (SW) Brian Hill
- MM1 (SW) Lloyd Jones IV

NEC 4229—Heat Exchanger Repair Technician
- GSMC (SW) James Burris
- GSMC (SW) Javier Fernandezrodriguez
- MM2 (SW) Mervyn Priela
- MMFA Daija Serranojackson
- MMFN Sara Sheppard
- MM2 (SW) Sterling Walston

NEC 4252—Outside Machinist
- GSM2 (SW) Quinton Amerson
- GSM2 Aaron Catlin
- MMC (SW) John Crownover
- MM2 (SW) Timothy Hanna II
- MM3 Juexin Marfai
- MMFN Samuel Wallace
- GSM2 (SW) Ernest Williams

NEC 4340—Diesel Engine-Governor & Injector Repair Technician
- EN1 (SW) Staci Allen
- EN3 Raquel Alvaredo
- ENFN Dakota Criner
- EN2 (SW) Ryan Dahl
- EN1 (SW) William Geesey, Jr
- EN1 (SW) Dean Geesey
- EN2 (SW) Rodney Harris
- EN1 (SW) Gregory Hermann
- EN1 (SW) Roselin Israel
- EN2 (SW/AW) Christopher Lindsey
- EN2 (SW) Andrew Plagge
- ENFA Jacob Pruett
- EN2 (SW) Alicia Smalley

NEC 4406—Inside Machinist
- MR3 Heather Asselin
- MR3 Kurt Bartels
- MR1 (SW/AW) Timothy Murray
- MR2 Lisa Petyak
- MR1 (SW/AW) Clint Thompson

NEC 4651—Outside Electrical Repair Technician
- EM2 (SW) Luis Moreno
- EM2 (SW) Glen Nassy

NEC 4652—Inside Electrical Repair Technician
- EM2 (SW) Gregorg Herdman
- EMC (SW) Samuel Nabutete
- EM2 (SW/AW) Milton Rosario
- EM2 (SW) Christopher Smith

NEC 4789—Interior Communications Repair Technician
- IC2 Brandon Giacone
- ICC (SW) Craig Knoerlein
- IC3 Steven Sheard
- ICSN Jasmine Tilley

NEC 4952—Pipefitter
- HTFN Amanda Mims

NEC 95AB—Valve Repair Technician
- MM2 (SW) Vanquez Adams, Sr
- DC2 (SW) Tony Arguello
- GSMFN Andrea Bayles
- MM2 (SW) Harrison D. Brantley
- MMC (SW/EXW) Timothy Gibson
- GSM3 (SW) Shaquoya Hart

(Continued on page 34)
NEC 95AC—Watertight Closure Maintenance Technician
- GSMFN Leana Higgins
- MM2 (SW) Jonathan Krautstrunk
- MM3 Roxan Lewis
- MM1 Larry Luellen, Jr

NEC 0121—Rigger / Weight Tester
- BM2 Jeremy Diggs
- BM2 (SW) Mitchell Downing
- BM2 (SW) Matthew Fanning
- BM1 (SW/EXW) Jorge Hernandez, Jr
- BM1 (SW) John Lowha
- BM1 (SW) Raymond Marquez
- BM2 Alvaro Martinez
- BM1 (SW) Jurien McFarlane
- BM2 (SW) Alex Mitchell
- BM2 (SW) Chris Santacruz
- BM2 (SW) Kayla Shaheen

NEC 4140—Gas Turbine Repair Technician
- GSM1 (SW) Johnnie Beard, Jr
- GSM2 (SW) Harry Buenvenida
- GSM2 (SW) Joone Buhain
- GSM1 (SW) Travis Coats
- GSM2 (SW) John Garcia
- GSM2 (SW) Renay Gardner, Jr
- GSM1 (SW) Britain Holmquist
- GSM2 (SW) Casey Hudson
- GSE1 Nicole Johnson
- GMS2 Aaron Mahoney
- GMS2 (SW/AW) Jesusa Nostrates
- GMS2 (SW) Anthony Parksllamas
- GMS2 (SW) Pedro Rangelalcaraz
- GMS2 (SW) Bruce Salazar
- GMS1 (SW) Geno Uy

NEC 4145—Gas Turbine Electrical Repair Technician
- GSE1 Joshua Gana
- GSE2 (SW) Daniel Menesesarellano
- GSE1 (SW) Arric Reed
- GSE1 Miguel Rodriguez
- GSE2 (SW/SU) Isaiah Scruggs, Jr

NEC 4228—Air Conditioning & Refrigeration Technician
- MM2 (SW) Ryan Ancheta
- MM1 McKinley Ashe, Jr
- MM2 (SW) Joseph Kimachia
- MM1 (SW) Fermond Lewis
- MM2 (SW) Joshua Stephens
- MM1 (SW) Sean Waddell
- MM1 (SW/AW) Anwar Wilson

NEC 4340—Diesel Engine-Governor & Injector Repair Technician
- EN2 Zayeir Bent
- EN2 (SW) Israel Bravo
- EN2 (SW) Fernando Caravez
- EN1 (SW) Rigoberto Casildo
- EN2 Diego Castillanos
- EN2 (SW) William Clatfelter II
- EN3 (SW/AW) Stephanie Csitkovits
- EN1 (AW) Joel Durano
- EN2 (SW) Orel Giltnner
- EN2 (SW) Perry Hathcock
- EN2 (SW) Gilberto Lepiz
- MM2 (SW) Jeffrey Lim

(Continued from page 33)
(Continued from page 34)

<table>
<thead>
<tr>
<th>NEC 4406—Inside Machinist</th>
<th>MR3 Jeremiah Barnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR2 (SW) Jose Cardenas</td>
<td>MRFN Miranda Cottonmyre</td>
</tr>
<tr>
<td>MRFN Ana Gomezbecerra</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEC 4542—Outside Machinist</th>
<th>MMFN Dominique Dellera</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMC (SW) Mark Fletcher</td>
<td>MM1 (SW) Steven Karger</td>
</tr>
<tr>
<td>MMC (SW) Bell Labrador, Jr</td>
<td>MM2 (SW) Jenny Millares</td>
</tr>
<tr>
<td>MM2 (SW) Kevin Navarro</td>
<td>MM2 (SW) John Ozobia</td>
</tr>
<tr>
<td>MM2 (SW/AW) Justin Webb</td>
<td>MMFN Elijah Welsh</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEC 4651—Outside Electrical Repair</th>
<th>EM1 (SW/AW) Andrew Anders</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM1 (AW) Elijah Blessing</td>
<td>EM2 (SW) Leslie Candido</td>
</tr>
<tr>
<td>EM1 (SW) Brandon Hostetler</td>
<td>EM2 (SW) Tao Jing</td>
</tr>
<tr>
<td>EM2 (SW) Nicholas Matano</td>
<td>EM2 (SW) George Robinson, Jr</td>
</tr>
<tr>
<td>EMC (SW) Daniel Negrifundora</td>
<td>EM2 (SW) Yannick Talomnounsi</td>
</tr>
<tr>
<td>EM1 (SW) Kimberly Rafanan</td>
<td>EMC (SW/AW) Roelvergel Villasin</td>
</tr>
<tr>
<td>EM1 (SW) Leo Reyes, Jr</td>
<td>EM2 (SW) Constantine Wilkinson</td>
</tr>
<tr>
<td>EM2 (SW) Paul Decoteau</td>
<td>EM2 (SW) Emmanuel Zunigamartinez</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEC 4782—Interior Communications Repair Technician</th>
<th>IC2 Emmanuel Camilo</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>NEC 4911—Shipfitter</th>
<th>HT1 (SW) Justin Rodriguez</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT2 Reid Schulzkump</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEC 95AB—Valve Repair Technician</th>
<th>EN1 (SW) Scott Demeritt</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN2 (SW) Daniel Hogue</td>
<td>MM3 Travis Hemphill</td>
</tr>
<tr>
<td>MMFN Eric Jobe, Jr</td>
<td>MMNC (SW) Eric Lawlor</td>
</tr>
<tr>
<td>EN1 (SW) Kendall Lindvold</td>
<td>MM1 (SW) Emmanuel Perez</td>
</tr>
<tr>
<td>MMFN Mayeli Rangel</td>
<td>MMFN Mayeli Rangel</td>
</tr>
<tr>
<td>EN1 (SW) Logan Sanderson</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEC 95AC—Watertight Closure Maintenance Technician</th>
<th>HT1 (SW) Christopher Cote</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT2 Joseph Deacon, Jr</td>
<td>DC1 (SW) Derek Esquivel</td>
</tr>
<tr>
<td>HTC (SW) Jonathon Fleshman</td>
<td>HTC (SW) Timothy Nedzweckas</td>
</tr>
<tr>
<td>DC3 Salvador Sandoval III</td>
<td>HT2 Esperanza Wahwani</td>
</tr>
</tbody>
</table>

Shore Intermediate Maintenance Activity
San Diego Detachment Ballast Point
(SWRMC SSMD)

<table>
<thead>
<tr>
<th>NEC 4911—Shipfitter</th>
<th>HT2 Don Smallcanyon</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT2 Joseph Deacon, Jr</td>
<td></td>
</tr>
<tr>
<td>HTC (SW) Jonathon Fleshman</td>
<td></td>
</tr>
<tr>
<td>HT2 (SW) Jeffrey Meginness, Jr</td>
<td></td>
</tr>
<tr>
<td>HT1 (SW) Derrick Rush</td>
<td></td>
</tr>
<tr>
<td>HT2 (SW/AW) John Navolanic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEC 4952—Pipefitter</th>
<th>HT2 (SW) Paul Decoteau</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT2 (SW) Paul Decoteau</td>
<td></td>
</tr>
</tbody>
</table>

July—December 2016

GRADUATES

January 2017

NAMTS News

35
GRADUATES
July—December 2016

USS Emory S. Land (AS 39)
NEC 4911—Shipfitter
HT2 (SW) Michael Willson, Jr

USS Frank Cable (AS 40)
NEC 4911—Shipfitter
HT1 (SW) Brian Matthew Kabisch

USS George H. W. Bush (CVN 77)
NEC 95AB—Valve Repair Technician
MM1 (SW/AW) Justin Holliday
NEC 95AC—Watertight Closure Maintenance Technician
MM3 (AW) Ricky Vera

USS Nimitz (CVN 68)
NEC 95AB—Valve Repair Technician
AO2 (EXW) Christopher Stubbs
GMC (SW/AW/IW) Gregory Waite

USS Iwo Jima (LHD 7)
NEC 95AB—Valve Repair Technician
MM1 (AW/SW/SS) Joshua Mayo
FN (SW) Brandon Strohfus
NAMTS Training is Available at these Shore Maintenance Facilities

<table>
<thead>
<tr>
<th>NEC</th>
<th>NEC Title</th>
<th>Ratings</th>
<th>MARMC</th>
<th>NNSY</th>
<th>SERMC</th>
<th>SWRMC</th>
<th>PNS DET SD</th>
<th>PSNS & IMF</th>
<th>PSNS & IMF</th>
<th>HRMC</th>
<th>NSSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4228</td>
<td>Air Conditioning & Refrigeration</td>
<td>MM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4340</td>
<td>Diesel Engine (General)</td>
<td>EN</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4145</td>
<td>Gas Turbine (Electrical) Repair</td>
<td>GSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4140</td>
<td>Gas Turbine Repair</td>
<td>GSE, GSM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4957</td>
<td>General Shipboard Welder / Brazer</td>
<td>HT</td>
<td>X</td>
<td></td>
<td>Pending</td>
<td>X</td>
<td>X</td>
<td>Pending</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4229</td>
<td>Heat Exchanger Repair</td>
<td>GSM, MM</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4541</td>
<td>Hydraulics Repair Technician</td>
<td>ABE, ABF, GSE, GSM, MM</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4652</td>
<td>Inside Electrical Repair</td>
<td>EM</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4789</td>
<td>Interior Communications</td>
<td>IC</td>
<td>Pending</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4406</td>
<td>Inside Machinist</td>
<td>MR</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pending</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4651</td>
<td>Outside Electrical Repair</td>
<td>EM, GSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>4542</td>
<td>Outside Machinist</td>
<td>GSM, MM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4952</td>
<td>Pipefitter</td>
<td>HT</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4227</td>
<td>Pump Repair</td>
<td>ABE, ABF, EN, GSM, MM</td>
<td>Pending</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>0121</td>
<td>Rigger / Weight Tester</td>
<td>BM, DC, EM, EN, GSE, GSM, HT, IC, MM, MR</td>
<td>X</td>
<td></td>
<td>Pending</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>95AA</td>
<td>Shipboard Calibration Coordinator</td>
<td>EM, EN, ET, GSE, GSM, IC, MM</td>
<td>Pending</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4911</td>
<td>Shipfitter</td>
<td>HT</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95AB</td>
<td>Valve Repair Technician</td>
<td>All Ratings</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>95AC</td>
<td>Watertight Closure Maintenance</td>
<td>All Ratings</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NAMTS Pipelines

Recruit to Apprentice 0 – 5 years

Recruit

“A” School

“C” School (Optional)

First Sea Tour

Apprentice to Journeyman 5 – 11 years

Second Sea Tour

Award 1st NAMTS NEC

RMC Tour

“C” School (Optional)

First Shore Tour

Maintenance Master Craftsman in 13 – 16 years
NAMTS Training Specialist

Shore NAMTS

Recruit to Journeyman 0 – 5 years

Recruit

“A” School

“C” School (Optional)

First Sea Tour

Award NAMTS NEC

Master 9 - 13 years

Journeyman 5 - 8 years

Second Sea Tour

Award 2nd NAMTS NEC

RMC Tour

“C” School (Optional)

First Shore Tour

Maintenance Master Craftsman 9 - 13 years
NAMTS Training Specialist

Afloat NAMTS
To learn more about the NAMTS program and how you or your Sailors can get involved, please contact your nearest Regional NAMTS Coordinator (RNC), Afloat NAMTS Coordinator (ANC), or CNRMC by using the information below.

<table>
<thead>
<tr>
<th>Points of Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNRMC—Code 900 Director, I-Level Production</td>
</tr>
<tr>
<td>Daniel Spagone</td>
</tr>
<tr>
<td>CNRMC—Code 930 Assistant NAMTS Program Manager</td>
</tr>
<tr>
<td>Timothy Jones</td>
</tr>
<tr>
<td>NAMTS Project Manager</td>
</tr>
<tr>
<td>Ted Dennis</td>
</tr>
<tr>
<td>Assistant Project Manager—East Coast</td>
</tr>
<tr>
<td>Art Sisk</td>
</tr>
<tr>
<td>Afloat NAMTS Coordinator — East Coast</td>
</tr>
<tr>
<td>Kevin Bond</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator—Mid-Atlantic Regional Maintenance Center (MARMC)</td>
</tr>
<tr>
<td>Jason Nofsker</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator—Norfolk Naval Shipyard (NNSY)</td>
</tr>
<tr>
<td>Andrew Porter</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator—Southeast Regional Maintenance Center (SERMC)</td>
</tr>
<tr>
<td>Osbert Teeka-Singh</td>
</tr>
<tr>
<td>Afloat NAMTS Coordinator—Guam</td>
</tr>
<tr>
<td>James Heffelfinger</td>
</tr>
<tr>
<td>NAMTS Production Equipment Specialist—East Coast</td>
</tr>
<tr>
<td>James Gessner</td>
</tr>
<tr>
<td>CNRMC—Code 930 NAMTS Program Manager</td>
</tr>
<tr>
<td>Gerald Schrage</td>
</tr>
<tr>
<td>CNRMC—Code 920 Maintenance Assist Team</td>
</tr>
<tr>
<td>Gary Evans</td>
</tr>
<tr>
<td>NAMTS Production Equipment Specialist - Lead</td>
</tr>
<tr>
<td>Brian Jolley</td>
</tr>
<tr>
<td>Assistant Project Manager—West Coast</td>
</tr>
<tr>
<td>Bill Edwards</td>
</tr>
<tr>
<td>Afloat NAMTS Coordinator — West Coast</td>
</tr>
<tr>
<td>Larry Burns</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator—Puget Sound Naval Shipyard & Intermediate Maintenance Facility (Bangor)</td>
</tr>
<tr>
<td>Sandy Hinz</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator—Puget Sound Naval Shipyard & Intermediate Maintenance Facility (Everett)</td>
</tr>
<tr>
<td>John Tjaarda</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator—Southwest Regional Maintenance Center (SWRMC)</td>
</tr>
<tr>
<td>Doug Scholl</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator—Pearl Harbor Naval Shipyard & Intermediate Maintenance Facility</td>
</tr>
<tr>
<td>Ed Yamashiro</td>
</tr>
<tr>
<td>NAMTS Production Equipment Specialist - West Coast</td>
</tr>
<tr>
<td>Jeff McNicholl</td>
</tr>
</tbody>
</table>