NAVY AFLOAT MAINTENANCE TRAINING STRATEGY

NAMTS NEWS

IN THIS ISSUE:
- USS Bulkeley (DDG 84) Values NAMTS Success
- Carrier Strike Group Ten: Self-sufficiency and Dynamic Force Development
- MCPON’s Marching Orders
- Master at Arms Earns 3 NAMTS NECs
Welcome to the 48th Edition of **NAMTS News**

This newsletter contains information about the Navy Afloat Maintenance Training Strategy (NAMTS) Program. The purpose of this publication is to raise the level of awareness of and support for NAMTS among the Navy’s senior leadership, resource managers, maintenance personnel and mentors by providing accurate information on current issues and events related to this important program.

You can access more information on NAMTS, including its governing instructions, training requirements, links to related websites, FAQs and archived newsletters at:

https://navsea.navy.deps.mil/FIELD/cnrmc/namts or www.valkyrie.com/namts

NAMTS News is brought to you by

Rear Admiral James P. Downey, USN
Deputy Commander, Surface Warfare
Commander, Navy Regional Maintenance Center

Ms. Stephanie A. Douglas, SES
Executive Director, Navy Regional Maintenance Center

Mr. Lloyd Jones
NRMC Deputy Director

CMDCM (SW/EXW/AW) Scott R. Kelley
Command Master Chief

Mr. Daniel Spagone, Sr.
Director, Intermediate Level Maintenance (C900)

Mr. Gerald Schrage
Sailor Professional Development Manager (C930)

Mr. Gary Evans
I-Level Maintenance & Production (C910)

Mr. Timothy A. Jones
Assistant Program Manager, NAMTS Contracting
Officer’s Representative (C931)

Mr. Scott Buchanan
I-Level Programs/Knowledge Management (C920)

Ms. Susan Lawson
CNRMC Public Affairs Officer

Personnel from the various Regional Maintenance Centers

Ms. Jill Clarke
Project Manager

Mr. Mike Mallore
Project/THMS Lead

Mr. Jon Russell
NAMTS Lead

Mr. Art Sisk
NAMTS Ashore Field Lead

Mr. Kevin Bond
NAMTS Afloat Lead

Mr. Charlie Lynch
SORCAT Project Manager

Mr. John Zuhowski
SORCAT East Coast Team Lead

Mr. Jason Wallis
SORCAT West Coast Team Lead

Ms. Kat Ciesielski
NAMTS & SORCAT Public Affairs

Contractors from the following organizations:

Frontier Technology, Inc.
Valkyrie Enterprises, Inc.
McKean Defense Group

On the cover:

150331-N-ZG705-380
ATLANTIC OCEAN (March 31, 2015) The guided-missile destroyer USS Bulkeley (DDG 84) transits the Cherry Point operating area. The ship, part of Harry S. Truman Carrier Strike Group, was conducting integrated training for what was an upcoming deployment. (U.S. Navy photo by Mass Communication Specialist 2nd Class K. Anderson/Released)
NAMTS News Contents

<table>
<thead>
<tr>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>USS Bulkeley's (DDG 84) NAMTS Sailors Deliver</td>
<td>1</td>
</tr>
<tr>
<td>Self-Sufficiency and Dynamic Force Development</td>
<td>2</td>
</tr>
<tr>
<td>What exactly is I-Level Maintenance?</td>
<td>4</td>
</tr>
<tr>
<td>MCPON’s Marching Orders</td>
<td>6</td>
</tr>
<tr>
<td>Continuing to Lead / CNRMC’s Command Master Chief’s Message</td>
<td>8</td>
</tr>
<tr>
<td>Let Your Sailors Fix It!</td>
<td>9</td>
</tr>
<tr>
<td>SORCAT Ship Visits: Issues Discovered</td>
<td>13</td>
</tr>
<tr>
<td>SORCAT Making a Difference in the Fleet</td>
<td>14</td>
</tr>
<tr>
<td>CO NAMTS Survey Results</td>
<td>15</td>
</tr>
<tr>
<td>CO SORCAT Survey Results</td>
<td>16</td>
</tr>
<tr>
<td>Inaugural Self-Sufficiency Open House</td>
<td>17</td>
</tr>
<tr>
<td>NAMTS IPE Team in Action in Bahrain</td>
<td>18</td>
</tr>
<tr>
<td>Rusty’s Corner / New Yet Familiar Faces</td>
<td>19</td>
</tr>
<tr>
<td>TRF Bangor Sailors at Work</td>
<td>20</td>
</tr>
<tr>
<td>NAMTS Sailors Undergo Vibration Analysis Training</td>
<td>21</td>
</tr>
<tr>
<td>Puget Sound Naval Shipyard & IMF Sailors at Work</td>
<td>22</td>
</tr>
<tr>
<td>MARMC’s Rigging / Weight Testing Shop</td>
<td>23</td>
</tr>
<tr>
<td>MARMC Sailors Excel at NNSY Inside Electrical Shop</td>
<td>24</td>
</tr>
<tr>
<td>NNSY Diesel Shop Receives RIB</td>
<td>25</td>
</tr>
<tr>
<td>SWRMC NAMTS Success</td>
<td>26</td>
</tr>
<tr>
<td>SWRMC Master at Arms Earns Third NEC</td>
<td>27</td>
</tr>
<tr>
<td>HRMC Accomplishments and Graduates</td>
<td>28</td>
</tr>
<tr>
<td>NAMTS Afloat Training Activities (NATA)</td>
<td>29</td>
</tr>
<tr>
<td>NAMTS / SORCAT at Symposiums</td>
<td>31</td>
</tr>
<tr>
<td>NAMTS Graduates</td>
<td>33</td>
</tr>
<tr>
<td>Training Availability</td>
<td>39</td>
</tr>
<tr>
<td>Points of Contact</td>
<td>41</td>
</tr>
</tbody>
</table>

Do you have content for an upcoming edition of NAMTS News?
Submit your NAMTS/SORCAT success stories, articles, photos and captions to

kat.ciesielski@valkyrie.com
USS Bulkeley’s (DDG 84) NAMTS and SORCAT Success

By John Zuhowski, SORCAT East Team Lead

As we seek to continually improve, a part of that process is asking for candid feedback from those we serve through NAMTS and SORCAT surveys. Below are two examples of feedback provided in support of each program. Like you, we continue to work hard in support of our fleet. If we’ve had the opportunity to work with you, thank you! If we have yet to do so, we look forward to coming aboard your ship in the near future!

“T
he salty and savvy SORCAT team came aboard USS Bulkeley (DDG 84) and took an objective look at where we were with regards to our repair capability prior to entering combat operations. They quickly identified NEC and equipment shortfalls that existed in our repair shop and brought a newfound awareness to the risks associated with not having the appropriate personnel and gear in place prior to an operationally demanding deployment. SORCAT’s attention to detail, helpful observations and suggestions made BULKELEY more ready for the fight and assisted with a paradigm shift on the importance of maximizing preparedness for repair operations during deployment. We didn't know who the heck these visitors were when they arrived aboard, but my Warriors are now quite glad to have known them and we appreciate how well they prepared us for deployment and how well they’ll be serving the rest of the fleet moving forward. I want them back on my ship, and every CO on the water front should be demanding they come visit them also.”

~CDR John Lucas IV, Commanding Officer

“U
ndoubtedly, several of our NAMTS Navy Enlisted Classification (NEC) Sailors directly enabled USS Bulkeley (DDG 84) to remain on-station conducting high-priority national tasking during our 2018 deployment to the 6th Fleet area of operations; we worked in extreme climates and under operational stress from the Arctic Ocean to the Eastern Mediterranean, mostly with scarce logistics support. The ingenuity of several of my NAMTS NEC technicians kept BULKELEY and her WOLFPACK in the fight - specifically, the hard work of my Main Propulsion and Electrical teams, highlighted by GSMC Schulz (736B NAMTS Pump Repair Technician) and his work on critical auxiliary systems (SWS/FM), GSEC Shockley (U11A NAMTS Gas Turbine Repair Technician) on the 60Hz generation system (keeping all three GTGs operational) and EMC Frierson (U39A Outside Electrical Repair Technician) with ensuring safe, flawless provision of ship service electricity and unprecedented repair to grounds across the ship.”

~CDR Luis Gonzalez, Executive Officer

L-R: Mr. John Zuhowski, SORCAT lead; seen here with USS Bulkeley (DDG 84) leadership CDR John Lucas IV, Commanding Officer, and CDR Luis Gonzalez, Executive Officer. (Photo taken by CMDCM (SW/AW) Reginald McCallum.)

NAMTS NEC holder, HT1 Robert W. Thompson, is seen at work welding a bracket. (Photo by John Zuhowski.)
Our new National Defense Strategy reinforces a mentality of being able to “fight tonight” and essential to this mentality is a departure from the predictable deployment dates and operating areas of the past. Dynamic Force Employment (DFE) delivers the operational unpredictability necessary to survive in today’s return to great power competition. This mindset must go much further and it must permeate our Force Generation models such that we develop the highest possible levels of readiness combined with organic repair capabilities in our ships and squadrons.

This requires a different approach to the pillars of readiness: personnel, equipment, supply, training, ordnance and navigation (PESTO-N). For us to regain our agility and to become a more operationally unpredictable force, the imperative is in regaining our organic repair capabilities. Just-in-time material support and the prioritized cyclic nature of the Optimized Fleet Response Plan (OFRP) has created an unintended consequence of reliance upon just-in-time parts support (i.e. significant time awaiting parts) and over-reliance on contractor or depot-level maintenance support to correct the casualty.

Instead, we must utilize programs such as the Navy Afloat Maintenance and Training Strategy (NAMTS) and Ship Organic Repair Capability Assessment Team (SORCAT) to move toward a culture of self-sufficiency; the “it’s broke, call someone” mentality is not very useful in a combat situation. We cannot expect access to the supply ship full of parts nor can we expect distance support in Emissions Control (EMCON) conditions, nor the ability to deliver contractor support in a contested environment. Ships and squadrons must build the organic skills and the proficiency necessary to fight without immediate parts support or technical representatives being flown in to fix our equipment.

In short, we can’t approach readiness as if we are preparing for a deployment date; we have to be prepared to fight tonight. That mindset drives a sense of urgency to everything we do at Carrier Strike Group (CSG) 10.

My guidance to my Warfare Commanders (WC) has been broad but crystal clear in the expectation that we develop as robust an organic repair ability as possible. I expect CSG-10 to develop the fighting culture of a champion, and to develop the skills and training necessary to sustain combat without immediate support.

This requires the WC’s to:

1) Identify critical components whose loss or failure would cause significant degradation to warfighting capabilities and work to ensure sustainable parts are on hand to mitigate failures. This applies to a host of parts in a risk matrix approach of measuring likelihood versus consequence to identify the most critical components to the CSG’s lethality;

2) Identify critical skills and pursue NAMTS and other training qualifications to either develop the necessary skills formally through NECs or informally through experience and OJT;

3) Foster a collaborative approach of knowledge sharing and teamwork amongst the CSG. I expect our ships and squadrons to work together, to make repairs and to share training and expertise like a family. This extends to lending critically skilled Sailors amongst each other as necessary to further training goals, but to also maintain the skills and experience within the CSG; and

4) Empower our khaki leadership to safely drive the culture back towards self-sufficiency first, and then call in the assistance from subject matter experts (SMEs) if that fails.

There is much out there already to set the conditions for self-sufficiency under PESTO-N. Organic repair has been part of the equation for CSG-10 ships. Thanks to our centerpiece, the

“We serve the greatest Navy the world has ever known, but great power competition exists. If deterrence fails, we must be ready to fight and win, today and tomorrow…”

...To be lethal, we must be ready. To be ready, we must accomplish all our core missions – man, train and equip – with ruthless execution…”

~Adm. Christopher Grady, Commander, U.S. Fleet Forces Command
“Message to the Fleet,” 8 May 2018

(Continued on page 3)
nuclear-powered aircraft carrier
USS Dwight D. Eisenhower (CVN 69), we have incredible resources such as a great machine shop. Our Cruisers and Destroyers also have machine shops, albeit less robust and our ships work closely together to build the right relationships and teamwork necessary for success. A recent motor rewind of a SAN JACINTO motor on IKE’s motor rewind shop is just that kind of collaborative teamwork that needs to return to the waterfront.

Within our lifelines we are seeing promising outcomes. Our Commanding Officers are taking the initiative and the Chief Petty Officer messes are identifying capabilities they need to develop not only repair knowledge but also to “build the bench.” The encouraging aspect for me is witnessing the impact of empowering our Sailors and the eagerness with which our Sailors are engaged in this process, as a few recent examples of self-sufficiency in action from Destroyer Squadron (DESRON) 26 ships can attest:

- While at sea conducting theater anti-submarine warfare operations, USS McFaul (DDG 74) crewmembers rebuilt the number 2 fire pump, returning it to full operation and permitting the ship to continue with maximum redundancy during a critical mission.
- Sailors from USS Oscar Austin (DDG 79) received on-the-job training aboard several ships on Norfolk’s waterfront, with eight Sailors learning more about the upgraded Slew ing Arm Davit (SLAD) and other assorted deck gear. Another division sent 10 Sailors to the National Geospatial Intelligence Agency for an Introduction to geospatial intelligence, learning how to use analysis of geographic features to predict an adversary’s movements. Finally, another division sent three Sailors underway aboard other ships for Combat Information Center fundamentals training. Two qualified in Baseline 9 watches and one was responsible for training three Global Command and Control System – Maritime (GCCS-M) operators.
- USS Stout (DDG 55) directly took on shortfalls in manning by creating “home-grown” quotas for critical NECs, including miniature/microminiature (2M) technician, a Navy multiband terminal technician and an air intercept controller.
- USS Stout also established a self-sufficiency email address where Sailors can email in what they have been doing within their daily work as well as big ticket repairs to become independent of outside processes. This gives everyone on the ship the chance to buy into the mindset.

These are but a few of the examples and it would be overly simple to think of this as just a “DIY” mindset to save time and money. By shifting focus to self-sufficiency, CSG-10 ships and squadrons are “bending the curve” in the right direction and we are seeing first-hand more fully-engaged and empowered Sailors eager to operate, maintain and own their equipment.

Guam’s NAMTS Program Re-energized

New NAMTS POC: Mr. Jojo Uy
Jojo.Uy@valkyrie.com / (671) 343-6240

“I remain resolved we have all the elements in place to make Guam the gold standard for NAMTS.”

—Mr. Joe Teijeiro, COMSUBPAC
The Navy maintenance community is flooded with different interpretations of what Intermediate (I-level) Maintenance is and/or what it should be. Across the spectrum, almost everyone knows that any work ship's force can execute is considered Organizational (O-level or TA4) Maintenance and any work beyond ship's force that is contracted out is Depot (D-level or TA1) Maintenance. The challenge comes on two other occasions:

1) When, with technical expertise/support from the Regional Maintenance Center Fleet Technical Assist (FTA) experts, the ship and these FTA subject matter experts can troubleshoot and execute the corrective maintenance. These are FTA or TA3 jobs.

2) When the work is beyond ship's force capability or capacity but is not so technically complex as to require depot level repairs, then the work is screened as I-level or TA2. This is the work done by the Production Departments of the Regional Maintenance Centers; it is work executed by Sailors and civilians in accordance with the Joint Fleet Maintenance Manual.

When apprentice Sailors, regardless of paygrade, perform I-level work they are developing journeyman level skills and filling their maintenance competency toolbox. This is the same as any apprentice program in the public or private shipyards. To gain that journeyman level certification the trainee needs to have the knowledge, skills and hands-on experience through repetition to proficiently perform the work. In NAMTS, this starts with learning the core basic level of knowledge in Industrial Plant Safety, First Aid, Hazardous Materials, Respiratory Protection, Hearing Conservation, Sight Conservation, Electrical Safety, Equipment and Systems Tag-Out, etc. Then they need to have the basic Trade Theory knowledge such as blueprint reading, rigging, finding and using technical manuals and drawings, etc. These are known as NAMTS JQR 100 series tasks.

When the basics are understood, the apprentice is ready to move on to the NAMTS JQR 200 series tasks which include the specifics of their trade such as tools and their proper usage as well as watching the work being conducted by Journeymen and Master Craftsmen.

Finally, the Apprentice is ready to move on to the NAMTS JQR 300 series tasks (Maintenance Competencies) where he/she starts executing the hands-on portion of their trade where they follow a work package or maintenance procedure and execute maintenance. This is usually done under the close oversight of a Master Craftsman. In the Navy, this is usually a Chief Petty Officer or civilian shop master.

Over time and many repetitions, the apprentice develops proficiency and is eventually ready to sit for his/her exam to certify as a Journeyman Craftsman.

After successful completion of the written exam and oral board the apprentice has completed all Journeyman Craftsman requirements and is a certified Journeyman ready to practice his/her trade and further develop into a Master Craftsman.
What Exactly is I-Level Maintenance? / MARMC 4Q NAMTS Graduation

(Continued from page 4)

So how does this tie into NAMTS?

The Navy Afloat Maintenance Training Strategy (NAMTS) is the program that establishes the minimum journeyman standards for each trade. NAMTS is tied to the service member’s official training record through CeTARS which tracks progress and completion of training processes, i.e., Maintenance Competencies. The benefit to this is that there is no specific required time line for completion of the NEC requirements. Therefore, if a Sailor is able to execute individual requirements and not complete all requirements the NAMTS program tracks completion status to final certification.

NAMTS Sailors are in the database so when they are aboard a ship at sea and their skillset is needed, it is easy for the Strike Force Commander to see what maintenance talent is available.

To develop the 355 Ship “Navy the Nation Needs” we must have trained and experienced Self-Sufficient Sailors. When we value Sailors who have the vocational technical skills to maintain and repair their equipment then we will have less catastrophic equipment failure. But to do so requires us to:

- Man the ships so we have operators and maintainers aboard to support routine maintenance and emergent repairs.
- Invest in actual hands-on vocational-technical maintenance skills training to develop muscle memory and experience.
- Invest in the facilities, industrial plant equipment, tools, technical documents, and materials to conduct shipboard repairs.
- Value Sailor Technical proficiency. Selection board precepts should focus on technical proficiency over academic achievement.

How does NAMTS/SORCAT tie into I-level?

NAMTS was the “booster shot” to provide I-level Maintenance with momentum to get Navy leadership to provide us RMC Sailors. Most Sailors come to the RMCs as an apprentice and perform Intermediate Maintenance to complete Journeyman level Job Qualification Requirements (JQR) to earn NAMTS NECs. We have trained and graduated over 3500 NAMTS Sailors and continue to build our inventory of NAMTS Maintenance Warriors.

Ship Organic Repair Capability Assessment Team (SORCAT) takes this one step further by focusing on restoration of ship self-sufficiency and Strike Force Intermediate Maintenance Activity (SFIMA). They conduct ship visits to assess and compare ship class designed organic repair capability with what is actually found. This includes identifying the required Industrial Plant Equipment is properly installed and maintained. Hand tools are available and maintained. Supplies such as metal stock, pipe, motor rewind wire, etc. are available to execute maintenance. Maintenance Warriors have easy access to ship's drawings and technical manuals that are necessary to perform maintenance and repair tasks. And most importantly, giving officers and Chief Petty Officers confidence that their Sailors are able to perform corrective maintenance and repairs.

SORCAT is the completion and natural extension of NAMTS to restore ship self-sufficiency and the Strike Force Intermediate Maintenance Activity (SFIMA) capabilities we so desperately need.

I-Level Maintenance, NAMTS and SORCAT are working in concert to ensure the Navy has Maintenance Warriors who are capable of being Self-Sufficient Sailors at Sea!

*Refers to the Chief of Naval Operations, Admiral John Richardson’s remarks from the 1 February 2018 speech delivered for The Heritage Foundation.

MARMc’s 4th Quarter NAMTS Graduation

By Chris Wyatt, MARMc Public Affairs Specialist

Mid-Atlantic Regional Maintenance Center’s (MARMc) Commanding Officer Capt. Daniel Lannamann was on hand for MARMc’s Navy Afloat Maintenance Training Strategy (NAMTS) graduation Nov. 29, aboard Naval Station Norfolk.

The graduating class of 15 Sailors earned certificates in at least one of seven NAMTS skill areas. Navy Enlisted Classifications (NEC) earned were for Shipfitter, Pipefitter, Valve Repair, Rigger/Weight Tester, Outside Electrical, Outside Machinist and Watertight Closure Maintenance.

MARMc Sailors enrolled in NAMTS receive on-the-job, rating-specific training, which can help them earn up to 19 different NECs.

Lannamann presented the graduates with their certificates and congratulated them on their achievement.

“A tremendous accomplishment on receiving your NECs,” said Lannamann. “This should be an inspiration to others to strive for their NEC qualification. It only helps you get better both personally and professionally and helps you with advancement as well. Now that you are qualified to go out on ships and help teach others how to operate and maintain their equipment, that not only makes our job easier on this end, but also gives the ship another subject matter expert.”

NAMTS training is available to Sailors on shore duty at Regional Maintenance Centers (RMCs), Intermediate Maintenance Activities or Facilities (IMAs or IMFs), shipyards, aboard tenders, as well as those stationed on ships undergoing extended maintenance availabilities.

MARMc’s 4th Quarter NAMTS graduation, held on November 29, 2018. (Photo by Chris Wyatt.)
“Smith wants sailors to ‘be more practiced’ in seamanship, their weapons and other skills that atrophied during two decades of ground warfare...

He’s helping to prod the Navy to ‘take away the things that won’t help them’ survive combat at sea.”

“It’s a work in progress,” exhaled Smith, shortly before one of the pictures broke loose from the frame and hit the deck.

But you can’t blame him for not settling in after four months as the MCPON.

He never expected to take the post. He was dragooned to serve as the interim MCPON on June 22...it wasn’t until Aug. 29 that Chief of Naval Operations Adm. John Richardson named Smith as the Navy’s top enlisted Sailor. Instead of setting up a bureaucratic beachhead inside the Pentagon, Smith immediately launched into a flurry of flights across the globe on behalf of his boss, their service and our nation...

…He served Thanksgiving mashed potatoes to the crew of the aircraft carrier Harry S. Truman as it sailed the Mediterranean Sea. He jetted to the other side of the planet to convene a Naval Station North Island meeting to find more ways to support Sailors and their families.

“Travel is going to be something we do because you don’t get a second chance to make a first impression,” Smith said, before adding that he might “need to slow that a bit.”

…As the fleet master chief to the Navy’s top personnel officer, he logged about 245 days on the road or at sea annually, he figures, but it’s all part of a process of finding out what’s happening on the piers, reporting the impressions of Sailors to admirals in Washington, D.C. and then advising CNO on crafting policies that make sense.

“Getting out and hearing firsthand what they have to say and seeing firsthand what they’re going through and finding out what’s on their minds is critical,” he said.

“The other side of this job is where you need to bring those fleet comments and opinions into meetings where admirals are going to consider what enlisted people need and want, and then move the rocks that change the enlisted experience.”

Master Chief Petty Officer of the Navy Russell Smith, Chief of Naval Operations Adm. John Richardson, Secretary of the Navy Richard V. Spencer, Chairman of the Joint Chiefs of Staff Gen. Joseph F. Dunford, Jr., and Secretary of Defense James N. Mattis at Army-Navy football game on December 8, 2018. (Mass Communication Specialist 1st Class Sarah Villegas/Released)

(Continued on page 7)
While Sailors relearn their reemphasized ratings, Smith wants the Navy to get better at evaluating how much they know and how well they perform their jobs.

He called the old ways of grading performance “subjective” and the push for new evals “a revolutionary step.”

It calls for stack up against a Navy-wide standard, not just against shipmates at their commands...

…To Smith, chiefs at heart are teachers, preparing young Sailors for waging war at sea and then leading them through the fight. But the Navy has struggled for the past decade at developing enlisted leaders.

The sea service once boasted commands dedicated to teaching leadership techniques and the courses were required for advancement, but units groused about losing Sailors to the programs.

Fleets took on the training themselves and Big Navy shuttered many of the schools. But funding never flowed fully to the fleet efforts and trained shipboard teachers also didn’t always materialize, Smith said, and the subjects and quality of the courses varied widely.

“Some were taught in three days like they were supposed to,” Smith said. “But some were perhaps taught in a little less time. But now, they’ll be taught with the same consistency all across the fleet.”

“It’s a top priority for the MCPON, who urges the Navy to “do more and step on the gas with deliberately developing leaders of character and sound ethical judgement.”

He pointed to master training teams from the Naval Leadership and Ethics Center in Newport, Rhode Island, with detachments in Norfolk and San Diego, that will target junior petty officers and chiefs.

“They’re the ones who are the messes around the world and ensure those foundational courses we teach are top notch, consistently delivered,” Smith said.

And he wants to make sure the Goat Locker isn’t left out.

“We realized and recognized that if you become a master chief in 15 or 16 years and you don’t become a CMC, you have no further professional touch points of education in your career,” he said “That’s not helpful or useful to you, so we’re developing that course.”

Throughout his talks with Navy Times, Smith was always quick to say that he’s just a member of a staff and his goals really are the goals of his boss, the CNO. But Adm. Richardson was more direct about why he chose Smith as his MCPON.

The four-star sees him as both a great example of servant leadership for other chiefs — a Sailor who always puts the team before himself, striving to improve so that he can better serve his Navy — and a bulldog with a “laser focus on warfighting.”

“He’s building a fighting Navy — fighting chiefs and fighting Navy Sailors,” Richardson told Navy Times.

“He connects instantly, and I think that’s because he has a deep and abiding respect for each and every Sailor. It’s fun to watch him interact. He quickly gains their trust. He’s a straight shooter with them. He tells it like it is. But he also always has a recommendation for how a Sailor can better their situation. He’s authentic. Genuine.”
Continuing to Lead

Recently, Navy Surface Forces (SURFOR) held a Command Master Chief (CMC) training symposium for SURFOR CMCs. I was asked to speak at the symposium to discuss Navy Afloat Maintenance Training Strategy (NAMTS), Ship Organic Repair Capability Assessment Team (SORCAT) and Maintenance Assist Teams (MAT).

It still amazes me that ship TRIADs (Commanding Officers, Executive Officers and Command Master Chiefs) are still unaware in some cases of any of these programs and what goodness they bring to the fight. I fielded numerous questions about our programs, and then several CMCs who have received SORCAT visits got up to expound upon their experiences. They spoke of how much help was brought to their ship; several CMCs spoke about the great work their NAMTS-qualified Sailors are doing aboard to bring self-sufficiency to their ships. Additionally, afterwards, numerous CMCs asked me for lists of their NAMTS-qualified Sailors and when they will receive a SORCAT visit.

We are receiving great encouragement and support from both U.S. Fleet Forces Command and U.S Pacific Fleet for our programs. The vision is lethality at sea. Being able to fight the ship, and continue to fight the ship in the wake of battle damage. We MUST be able to be self-sufficient at sea to fight and win! Commanding Officers are coming around and really starting to allow Sailors to work on and repair their gear again. You, as a NAMTS-qualified Sailor returning to sea, must be vocal and say, “why are we CASREPing* this gear? It’s MY gear! Let me fix it!”

Be sure to check out the article beginning on the next page for more of my thoughts on self-repair.

*CASREP = Casualty Report
LET YOUR SAILORS

As sailors’ maintenance competencies increase, so does fleet readiness.
BY COMMAND MASTER CHIEF SCOTT KELLEY, U.S. NAVY

In a high-end battle, a commanding officer may have to fight his or her ship in a communications-denied environment. If battle damage is taken, there will be no time to go to port or call for a technical assist; the sailors on board must be able to repair and continue to fight the ship. Chief petty officers are key to the Navy’s ability to do this.

Chiefs are the top technical authority within a rating onboard a ship. The Navy must trust its chiefs to train their sailors to maintain and repair their equipment, and then allow them every opportunity to work on and repair it.

LOSSING CAPABILITY

In the 1990s, following the Cold War, most of the aloft destroyer and submarine tenders that provided intermediate (I-level) maintenance support for deployed ships and submarines were decommissioned. At the same time, many of the shore intermediate maintenance activities (SIMAs) were consolidated or closed, substantially divesting fleet concentration areas of I-level repair capabilities.

By 2003, the Navy had reduced or consolidated training and assessment programs as it moved from developing sailors as operators and maintainers to focusing on equipment operation and watchstanding. Compounding this, over the past two decades sailor training has not focused enough on organizational (O-level) and I-level maintenance.

While there were some immediate cost savings, these changes had unintended consequences, including a significant loss in fleet maintenance skill and self-sufficiency, ship material readiness, and battle-damage repair capability. Reduced manning on ships and at shore support facilities placed unmanageable workloads on smaller, less trained crews; as a result, ships were not maintained to required standards.

With the decommissioning of the SIMAs and all but two submarine tenders, there no longer were standard I-level process control procedures where sailors used the same equipment and quality assurance standards they would use at sea. Most equipment that was standard at the SIMAs and on the tenders was sent to the Defense Reutilization and Marketing Office. A recent review of shipboard repair equipment on big-deck amphibious ships and aircraft carriers found that some of the original outfitted machine shop and repair equipment was removed or sat unused in lay-up.

I-LEVEL MAINTENANCE AND TRAINING

To reverse this loss of maintenance and repair capability/proficiency, the Navy has taken action on several lines of effort. First, Commander, Navy Regional Maintenance Center (CNRMC), and the regional maintenance centers (RMCs), including naval shipyard intermediate maintenance activities, are collaborating on three I-level “value streams”:

- Maintenance competency development
- Material readiness support
- Shop production

Based on an analysis of existing programs and inspection reports, it became clear the Navy had significant challenges with maintenance knowledge and experience, from the shipboard planned maintenance system (PMS) to routine O-level work normally accomplished by ship’s force. The Navy needed a solution that provided not only short-term successes, but also long-term quantifiable successes to

(Continued on page 9)
ensure continued fiscal support of I-level maintenance and training programs. As a result, in October 2010, CNRMC, with support from the surface type commanders and fleet maintenance officers, began the task of righting I-level maintenance using the Navy Afloat Maintenance Training Strategy (NAMTS) program and hands-on production experience.

A primary goal was to restore a path to technical competence for shipboard sailors. As sailors learn maintenance competencies through hands-on, real-world, I-level shop production (tracked by NAMTS), ship material readiness increases. Sailors who complete NAMTS qualifications return to sea with increased skills and confidence to support maintenance actions. An analysis of hull, mechanical, and electrical-rated sailors taking advancement exams showed that those who were involved in or had graduated from a NAMTS program scored higher than their peers who lacked RMC/shipyard-provided hands-on training.

Developing maintenance competency hinges on the NAMTS program, as it provides graduates with Navy enlisted classification codes to aid in the distribution of maintenance warriors to sea. Sailors stationed at RMCs and naval shipyards are provided meaningful shore duty in fleet concentration areas and continue their professional education by expanding their maintenance competencies as they move from apprentice to journeyman and ultimately to master craftsman.

Following a manpower analysis, the Navy determined 1,587 sailors needed to be assigned to the RMCs to help restore I-level maintenance capability. Southeast Regional Maintenance Center was reestablished in Mayport, Florida, and Forward Deployed Regional Maintenance Center, Naples, Italy, was stood up, with detachments in Bahrain and Rota, Spain. Sailors also have been assigned to naval shipyards in Norfolk, Virginia; Puget Sound, Washington; and Pearl Harbor, Hawaii, to provide more opportunities to perform I-level maintenance work.

In 2015, CNRMC also rolled out afloat NAMTS training to carriers and big-deck amphibious ships—which have intermediate maintenance activity capabilities in their own right—to provide them access to NAMTS. The plan is to capitalize on the production work these ships perform to train their sailors. As these sailors come from sea duty to an RMC, their opportunity to become journeymen and master craftsmen is expedited because they are in a continual maintenance environment where they can increase their in-rate training and experience, get training on unique systems, and continue stocking their maintenance competency toolbox.

CNRMC and the NAMTS maintenance support team also are working to provide NAMTS training to sailors assigned to precommissioning detachments/units (PCD/PCUs). Realizing there is some available time at PCD/PCUs for training, the support team is working to maximize competency development opportunities. This training usually does not require temporary duty funds because the detachments are located in fleet concentration areas and sailors are trained at the local RMC.

Because NAMTS’s 340-plus unique maintenance competencies can be earned relatively quickly (two to ten days each), PCD/PCU sailors can earn their required Navy enlisted classification codes and several other competencies while awaiting formal school start dates or orders. All competencies are recorded in the sailor’s electronic training jacket and can be built on by training at any RMC or afloat NAMTS program.

With many ships having a limited number of RMC-served sailors, there is not yet a critical mass of proficient maintainers afloat to move the ships’ material readiness needle, but CNRMC is working with enlisted distribution managers to man ships with the required NAMTS Navy enlisted classification codes and has been monitoring their material readiness, self-assessment ability, and organic repair performance.

Second, the Navy has reintroduced the strike force intermediate maintenance activities structure to provide strike groups organic repair capabilities across the force. This capability is measured in tools and machinery installed on board, sailors qualified to operate the machinery, and materials and support required to use the equipment. A ship’s organic repair assist team now assesses all the ships in a strike force six months prior to deployment; determines what equipment needs to be repaired, installed, or removed; identifies shortfalls in materials and sailor training; and provides a report to the commanding officers of the ships and the strike group commander. In addition, the team assists in installing and repairing equipment and in training sailors to operate it. Building and maintaining this organic repair capability will support the toughness and self-sufficiency described in the Chief of Naval Operations’ “Design for Maritime Superiority.”

RMC MATERIAL READINESS SUPPORT

Third, CNRMC is increasing its fleet support through maintenance assist teams (MATs), small-crewed hybrid MATs, self-help opportunities, and metrology and calibration/shipboard instrumentation and systems calibration.

MATs send 10 to 15 RMC sailors and civilian subject-matter experts, shop-to-ship, to work side by side with ship’s force performing PMS and corrective maintenance on targeted high-failure equipment. The purpose of MATs is to train sailors and provide a comprehensive material assessment and maintenance review, with a goal of increasing the readiness of the targeted systems. Through the use of NAMTS and MATs, unit self-sufficiency is promulgated to ship’s force by over-the-shoulder instruction and hands-on learning while performing the required pre-

(Continued on page 10)
ventive and corrective maintenance and documentation to support sustained operations.

Initially, the MAT program started with valve MAT, focusing on main and secondary drain systems; deck MAT, focusing on boat davits, J-Bar davits, lifelines, and topside ladders; and auxiliaries MAT, focusing on air conditioning and refrigeration, hydraulic systems, and anchor windlass and steering systems. Following the success of these teams, the program expanded to include electrical, gun, gas turbine, rigid-hulled inflatable boat, watertight door, and laundry and galley. Metrics continue to show that ships that take advantage of MATs within six months of Board of Inspection and Survey reviews are able to exceed their material readiness requirements.

During the past year, CNRMC and the NAMTS industrial plant equipment team have installed and tested numerous pieces of I-level support equipment in their temporary warehouse facility. This facility is supporting the mine countermeasures/patrol coastal ships and Navy Expeditionary Combat Command boats until a new facility can be built. The new building is scheduled for completion in fiscal year 2019 and will support I-level production and provide limited support to deployed littoral combat ships.

NEXT STEPS

By restoring hands-on training through I-level MAT visits and a robust NAMTS program, CNRMC is improving MAT use has seen a slight downward trend over the past two years and has fallen to below CNRMC’s expected number of visit requests because of a lack of awareness by stakeholders. To address this, CNRMC is working to establish a “push vs. pull” schedule. RMCs are assisting ships in scheduling teams and are evaluating syncing MATs to total ship readiness assessment events. The goal is to make the full set of MATs available to each ship during its optimized fleet response plan cycle.

CNRMC also is working with the Mid-Atlantic RMC to develop hybrid MATs. With small-crew ships, the standard MAT execution is a challenge, so CNRMC developed a hybrid model that will contain RMC sailor and civilian team members supporting several different MATs simultaneously. These hybrid teams can be tailored to specific ship classes based on equipment and systems.

Hybrid MATs are of particular interest for Fifth Fleet small-crew ships and Forward Deployed Regional Maintenance Center Bahrain, which recently stood up I-level capabilities.

Commander, Navy Regional Maintenance Center, is focusing on training the ship’s force with over-the-shoulder, hands-on instruction while performing preventive and corrective maintenance.

ship material readiness. The Navy must continue to man and equip its RMCs, shipyards, and ships’ organic repair capability. More manning already is requested in Program Objective Memorandum 2020, and it is critical to the future self-sufficiency of the fleet that these sites are funded and manned. Once these NAMTS warriors are trained and returned to sea duty, they will need receptive chains of command to support them by providing the tools, equipment, and materials to work on their equipment. Using distance support and on-board technical experts, ships can repair their equipment much faster.

Today’s ships and submarines must be more resilient and capable of self-repair. Let’s trust the chiefs to train their sailors and get them working on their gear!

MASTER CHIEF KELLEY is the command master chief of Navy Regional Maintenance Center in Norfolk, VA. He previously has served as command master chief of a guided-missile destroyer, cruiser, and frigate, a naval shipyard, and a type commander staff.
As more and more SORCAT visits are occurring throughout the fleet, the team is slowly discovering challenges that require some attention.

ISSUE 1: Vidmar Cabinets

One of the interesting things that has come to light and is a common issue on the Arleigh Burke Class Destroyers is the condition of the Vidmar cabinets in the general workshop. As the ship matures in its service life, eventually the cabinets become worn and require replacement.

USS James E. Williams (DDG 95) has discovered that the original Vidmar cabinets for the general workshop, if selected as replacement cabinets, will not fit through its water tight doors and water tight hatches. Ship’s Force discovered that during the shipbuilding process, all equipment and tool storage cabinets are landed in place and shortly afterward, the 01 level deck is welded in place. Replacing current Vidmars with the same sized cabinet cannot be accomplished without the requirement of access and deck cuts. The same model replacement cabinets will not fit down the hatches located outside the Executive Officer’s passageway and Chief Petty Officer mess passageways because the cabinets are too wide. An original installed Vidmar cabinet, model (RP1940) is 28 inches tall by 27 3/4 inches deep by 30 inches wide. Shipboard hatches are 27 inches wide. In order to replace the Vidmar cabinets with an identical replacement, costly access cuts are required.

PROPOSED SOLUTION

The ship’s Port Engineer, Mr. William Paetz, contacted the original manufacturer, Stanley Black & Decker, Manufacturing Division, informing them of the discrepancy. Stanley’s Vidmar sales representative, Mr. James Roark, has responded by providing information on a different cabinet that will fit through all current ship water tight hatches and doors. The new model replacement cabinets will not fit down the hatches located outside the Executive Officer’s passageway and Chief Petty Officer mess passageways because the cabinets are too wide. An original installed Vidmar cabinet, model (RP1940) is 28 inches tall by 27 3/4 inches deep by 30 inches wide. Shipboard hatches are 27 inches wide. In order to replace the Vidmar cabinets with an identical replacement, costly access cuts are required.

ISSUE 2: Compliance with DCRA 2017-02

Another challenge with which DDG crews have been faced is the ability to comply with the message released by COMPNAV/SURFLANT/COMNAV/SURF PAC’s Damage Control Readiness Advisory (DCRA) 2017-02, Reclaiming CBR-D storerooms, 231851Z MAR 17, which states that storerooms shall be utilized for CBR-D gear only. Historically, these storerooms were also used for other damage control equipment storage. In complying with the directive of the message, Damage Control (DC) gear previously stored in the CBR-D storeroom, has migrated to the General Workshop. SORCAT is noticing that the other gear migrating to the workshop interferes with the capabilities of the work center to function as designed. Examples of items that interfere have been found to include: self-contained breathing apparatus (SCBA) bottles and frames, portable exothermic cutting units, pipe patching kits, shoring tool kits, firefighting personal protective equipment (PPE), carbon dioxide (CO2) bottles, 1-1/2-inch fire hoses, and other Damage Control Petty Officer (DCPO) material.

In some cases, actual repair equipment and repair stock material storage areas have been removed to make room for Damage Control material.

PROPOSED SOLUTION

The General Workshop should be designated for repair equipment and repair material storage only. Excess Damage Control gear should be stored in the repair lockers and/or designated Damage Control Store rooms.

In summation, it is understood that equipment and material stowage space on a DDG is in short supply, but the alteration in purpose of the General Workshop, storage of DC equipment in the space, and removal or altering of repair equipment in the General Workshop diminishes the repair capability of these mighty warships.

![Shipboard Vidmar Cabinet](image)

<table>
<thead>
<tr>
<th>Shipboard Vidmar Cabinet</th>
<th>Current</th>
<th>Suggested Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>200</td>
<td>LWO 175*</td>
</tr>
<tr>
<td>Size</td>
<td>28" X 27 3/4" X 30"</td>
<td>28" X 28" X 26"</td>
</tr>
<tr>
<td>Cost per Cabinet</td>
<td>$1,717.43</td>
<td>$996.65</td>
</tr>
<tr>
<td>DDG total Cabinets</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DDG Total Cost</td>
<td>$13,739.44</td>
<td>$7,973.20</td>
</tr>
</tbody>
</table>

(Photos by Rick Smith.)
“NAMTS/SORCAT trains self-sufficient Sailors to repair/operate/maintain their equipment in a denied environment.”

~ RADM Mark Whitney
Director, Fleet Maintenance,
U.S. Fleet Forces Command

USS Abraham Lincoln (CVN 72) Sailors, HTFN David Schatt (left) and HT2 Warren Ruth, receive over-the-shoulder training from SORCAT members Mike Dengate (pictured) Outside Machine SME) and Mike Gwinn (Technical Library SME). (Photo by Mike Gwinn.)

Above and below: SORCAT member Chad Woodward conducts OMS Training for the Engineering Department aboard USS James E Williams (DDG 95) on October 16, 2018. BM1 Sasha Williams, who was so proactive in the QA program and extremely proactive in getting her Sailors the OMS and Pump and Valve training provided by SORCAT during their visit. “It’s refreshing to find a Petty Officer who is so engaged not only in her division but with the entire department; she had Sailors from all work centers attend training because she clearly wants the best for her Sailors,” stated Ric Adams, SORCAT QA SME. (Photos by Ric Adams.)

Above: Sharon Jones, SORCAT Logistical and 3M SME, provides training to HM1 Bruening, DC2 Dormady, EM2 Lee, and EM2 Sheetz aboard USS Portland (LPD 27). (Photo by Chad Woodward.)

Below: Also aboard USS Portland, Russel Lincoln speaks with EM3 Yates about Electrical Motors. (Photo by Chad Woodward.)
NAMTS CO Survey Results

“HTC Siemens, MM1 Gicheru, EMC Cuellar, all NAMTS NEC holders, are command recognized experts in their field. Countless times have all three of these engineers provided equipment troubleshooting and rapid first time repairs in support of commands operational missions.”

~LCDR Jason Holmes

“My NAMTS NEC holding technicians are a critical resource, especially considering our homeport. The Depot and IMA level resources in Pearl Harbor are often limited due to the number of ships which require their support. It’s great that we have Sailors available to HALSEY who have the requisite skills to affect critical repairs.”

~CDR Michael Stoker

“The NAMTS program has been successful for many of my Sailors. We were able to send several Sailors to the NAMTS program at MARMC during the Sailor’s stay at the PCD in Norfolk, VA, while waiting for the ship to deliver to the Navy.

Having a new construction hull also helps those Sailors to see what ‘new’ or ‘like new’ looks like and work on equipment that is received (first issued and installed) on ships that should be functional - and its functionality depends a whole lot on the installation process and the care and protection afforded to the equipment...

...We appreciate the NAMTS program and want to see that it remains in place for future Sailors to take advantage of what it offers.”

~CDR Nathan Scherry

“This is the perfect program to get ships back to being self-sufficient.”

~CDR Errol Robinson
CO Survey Results Post SORCAT Visit & Ways SORCAT Helped

Compiled by Rick Smith, SORCAT Inside Machine SME

"The SORCAT team should have more opportunities to help improve fleet repair capabilities. It was a pleasure to have the team aboard and we look forward to working more with them in the future. My Sailors learned a lot from them and they helped restore multiple repair capabilities that had fallen dormant aboard ARLINGTON."

~ CAPT Todd Marzano

SORCAT HELPED WITH:

POWER HACKSAW BLADE TENSIONER Power hacksaw was inoperative due to a missing blade tensioner; SORCAT assisted ship’s force in the manufacturing of a new tensioner, providing technical repair training and oversight while using various precision measuring instruments, restoring the power hacksaw to full operational capability.

DEGRADED MILLING MACHINE Vertical milling machine speed selector clutch pack vibrated loose; SORCAT provided technical repair knowledge to ship’s force, while using an equipment technical manual, demonstrating how to adjust the fastener bolts to proper settings, eliminating the need for requisitioning a manufacturer repair technician.

LATHE STEADY REST MOUNTING BRACKET Engine lathe steady rest mounting bracket was missing; SORCAT assisted ship’s force in the manufacturing of a new mounting bracket by teaching blueprint reading techniques from the equipment’s technical manual, restoring the ships capability to manufacture pump shafts.

LATHE TAPER ATTACHMENT SECURING BLOCK Engine lathe taper turning attachment was inoperative due to a missing securing block; SORCAT assisted ship’s force by teaching advanced milling machine operations and technical manual interpretation in the machining of a new securing block, restoring full taper turning operations to the lathe.

"Thank you for the training provided -- my ship and crew benefited greatly from your team’s visit. While my team came away with more knowledge on where to obtain ‘hard to find’ parts/equipment, I think we need more visits to assist in fully developing training to address ‘deficiencies’ in pipeline training."

~ CDR Justin Hodges

SORCAT HELPED WITH:

Missing precision measuring instruments aboard; SORCAT provided a comprehensive listing of all required precision measuring instruments with automated equipment listing data, to include proper storage requirements, while also providing training on the storage, inventory and upkeep of a calibration program.

"The Team from SORCAT was able to fix the valve test stand and multiple pieces of MR equipment which we have already put to use and have greatly improved KEARSARGE’s material readiness."

~ CAPT David Guluzian

SORCAT HELPED WITH:

MACHINIST TRAINING PLAN Inside Machine Shop was lacking a comprehensive training plan; SORCAT provided a project driven training plan to ship’s force, aiding in skill improvement for advanced lathe, milling machine and machinery repairmen repair techniques.
Commander, Naval Surface Force Atlantic (COMNAVSURFLANT) and Mid-Atlantic Regional Maintenance Center (MARMC) hosted the inaugural Self-Sufficiency Open House on November 27, 2018, at Naval Station, Norfolk, VA. With approximately 100 participants attending from United States Fleet Forces Command, Naval Sea Logistics Center, Naval Sea Systems Command, Afloat Training Group, MARMC, and crew members from several Norfolk-based surface ships and carriers, the event was a success! RDML Jesse Wilson, Commander, Naval Surface Force Atlantic, kicked off the event with a discussion on programs Sailors can leverage to improve their self-sufficiency and he presented an award to those in attendance from USS Winston S. Churchill (DDG 81) for being the Norfolk-based ship with the highest Self Sufficiency Index (SSI). Attendees visited displays and discussed programs with representatives from Maintenance University, Navy Afloat Maintenance Training Strategy (NAMTS), Ship Organic Repair Capability Assessment Team (SORCAT), Micro-Miniature (2M) Repair Program, Maintenance Assist Team (MAT), 3-M PMS SKED Project, Corrosion Control Assist Team (CCAT) and the Self Sufficiency Index (SSI) Team. The ship recognized for having the most Sailors present as the event was USS Oscar Austin (DDG 79).

The self-sufficiency open house was well attended and plans are in the works to host another event in the near future. Stay tuned!
F orward Deployed Regional Maintenance Center (FDRMC) Detachment (DET) Bahrain recently received the first-ever Computer Controlled Water Jet cutting machine made by OMAX. The project was a joint effort between the Ship Maintenance Improvement Program (SMIP) with its Commander, Navy Regional Maintenance Center (CNRM C) Program Manager, Mr. Gary Evans, and Program Support, Mr. Brian Jolley, and the FDRMC DET Bahrain Code 900 Sailors, who were led by CWO5 William Thames. The $450,000 piece of equipment was purchased, origin-tested, disassembled and shipped to Bahrain. It was then reassembled, installed and tested on-site at FDRMC DET Bahrain’s I-level shop facilities in October 2018. The installation was an exemplary display of communication and teamwork amongst all involved to get the equipment parts through customs and safely to the facility. Installation mounts had to be fabricated, electricity and plumbing had to be run, and there were a myriad of other detailed tasks that could not have been accomplished without an incredible amount of collaboration that resulted in a successful test run of the system. The OMAX waterjet machine provides tremendous new capability for FDRMC DET Bahrain shop for cutting metal, wood, gaskets and other materials with over 3,800 pre-programmed cut designs uploaded from stateside shops giving them a running head start for part fabrica-
tion and ship support in the Central Command Area of Responsibility.

M r. Andy “Rusty” Vasquez, CNRMC’s Corrosion Control Subject Matter Expert, traveled to Naval Support Activity Bahrain to conduct Corrosion Control Program Manager (CCPM) training for ships’ crews and RMC Sailors. While there, he conducted a pilot effort of the Corrosion Control Maintenance Assist Team (CCMAT).

CCPM is a Type Commander requirement to be established on each surface vessel; it is usually a position filled by a Chief, Senior Chief, or a Junior Officer. The course consists of three hours of classroom education addressing the basic causes and treatments for corrosion as well as an overview of the many tools a procedures used to utilize these treatments to both repair and prevent top-side surface corrosion. Coursework is followed by an exam requiring an 80% passing score. Finally, the students are worked through a practical application and tool usage demonstration, during which they get to try some of the latest tools and techniques in surface cleaning, preparation and paint application. Two classes were conducted during a one week period, the latter was hosted aboard USS Firebolt (PC 109). A total of 18 Sailors were enrolled and earned designation as bona fide CCPMs.

In addition to the CCPM course of instruction, Mr. Vasquez conducted CCMAT efforts on several ships. The CCMAT is a pilot effort specific to corrosion control tools, techniques and procedures and is being added to the Maintenance Assist Team portfolio. Training was provided to Sailors aboard USS Devastator (MCM 6), USS Sirroco (PC 6), and USS Firebolt (PC 10). Participants were provided with training in new corrosion control technology such as the Polysiloxane paint cleaning kits and the Polysiloxane cartridge paint application system. While in theater, Mr. Vasquez provided surveys of corrosion issues and expertise on non-skid applications to the various ships stationed in Bahrain.
As you well know, sea water can be quite harsh on ships, so we’re always looking for products to help combat corrosion.

In collaboration, Naval Surface Warfare Center Carderock Division (NSWCCD), CNRMC and USS Gettysburg (CG 64) recently participated in an experiment of sorts. NSWCCD members Charles White, Brian Everett, Darren Melhuish and Kylee Fazende in addition to the Corrosion Control Assistance Team from CNRMC helped with the effort. A six-foot square area on the starboard side Fo’c’sle inboard area was painted with five different primer colors and five different polysiloxane topcoats in an effort to determine their lifecycles and wear characteristics. The location selected receives maximum exposure to sunlight, the elements and saltwater and will be otherwise undisturbed over the next year.

The area was prepped with a needle gun and rotating sanding disc. Proper environmental conditions were met and recorded. The liquids were carefully mixed and when time for applying the samples, the proper thickness of paint was applied while meeting the proper curing time between coats.

Primers were applied horizontally and the topcoats were applied vertically.

In a year, the samples will be evaluated for wear; stay tuned to NAMTS News for the results!

Personnel turnovers are a way of life in the U.S. Navy, and Intermediate Maintenance Facility is no exception. Some new but familiar faces recently joined the Trident Refit Facility (TRF) Bangor NAMTS team and recent events opened new doors for past and present employees of the program.

As many at TRF Bangor know, the NAMTS Program Manager, Robert Dorris, vacated the command earlier this year. Ms. Sandra “Sandy” Hinz was chosen as the new NAMTS Program Manager. She retired from the Navy with 23 years of service as a Chief Hull Maintenance Technician and has an extensive background in procedural research, ship repair and quality assurance. In addition to her Navy experience, Hinz had served as the Regional NAMTS Coordinator for the last six years, during which she had the opportunity to lead and mentor TRF Bangor Sailors throughout the NAMTS program.

Recently, Robert “Rob” Campbell accepted the position Hinz departed and serves as the current Regional NAMTS Coordinator. Like Hinz, Campbell retired from the Navy as an HTC. Prior to his retirement, Campbell was the command Job Qualification Requirements (JQR) Coordinator. He was responsible for day-to-day function of the office and spent much of his time interacting with and mentoring NAMTS Sailors.

“I was proud to mentor Sailors in NAMTS as a Chief and am even more so now as the RNC,” said Campbell. His military experience and familiarity with the NAMTS program are a welcome addition to the command.

Along with new leadership comes a new perspective and a fresh approach to the program. The goal is to motivate and drive the Sailors to gain as much knowledge as possible during their tour, ensuring the fleet is provided with competent, confident Sailors.

“We pride ourselves on the program we have and the training we provide; we will continue to grow and transform to meet the needs of the command and the fleet,” said Hinz.
TRF Bangor Sailors Learn About Preservation and Corrosion Control

By Rob Campbell, Regional NAMTS Coordinator

Once over dust, twice over rust,” goes the old Navy saying. Thankfully, Sailors participating in TRF Bangor’s NAMTS program get more than just an old motto to go by when learning the ins and outs of preservation and corrosion control work.

Sailors work side-by-side with TRF Bangor’s professionals from the paint shop 71A to gain hands-on experience. It’s more than just slapping paint on a bulkhead. Paint shop mechanics Kevin Wester and Brian Molver guide Sailors as they perform each step in the process, encouraging them to understand the “why” of what they are doing, in addition to the “how”.

“When Sailors go back to the fleet, they know how to do it the right way,” said Hull Technician 2nd Class Derek Bronson, who said he was never formally taught the proper way to prepare a surface for preservation before joining the NAMTS program.

Shop 71A corrects that problem by providing Sailors with the knowledge and skills needed to properly paint and preserve any component, increasing Sailors’ professional value, saving the fleet from early erosion and saving the Navy money by doing it the right way the first time.

The team in Shop 71A shows NAMTS Sailors what right looks like every step of the way, from pre-job equipment checks to application of the final coat of paint. This is important because paint performs effectively only if applied to a surface that has been properly prepared, according to the Naval Ship’s Technical Manual (NSTM) Chapter 631 regarding preservation of ships in service, S9086-VD-STM-010, 631-5.1.

Sailors are taught how to use solvent to remove all the grease, oil, dirt, chemicals and water contaminants from the surface to be painted to ensure the metal is ready. The next step is a thorough sanding of rusted surfaces. After sanding the rusted areas to bare metal, Sailors learn to feather the edges of the existing painted surface, creating a smooth transition between the bare metal and the paint.

“We clean the entire area with solvent once more before applying the primer coat to only the sanded areas, then let it set for 12 hours to cure and apply the top coat of paint,” said Wester.

NAMTS Sailors also learn how to properly use needle guns and grinders to remove paint, ensuring the hull, machinery and components will last the life of the ship, said Machinists Mate 2nd Class Douglas O’Reilly.

Sailors in the program learn valuable skills, and they enjoy what they do.

“The NAMTS program is fun and exciting. I have had the opportunity to work with [experts] and learn a lot that I would have never been able to,” said Bronson.

All of this training serves the Sailors, the vessels and the Navy by keeping ships at sea, reducing rework and saving money. All in all, preserving preservation skills within the fleet is a win.
Engineering-rated Sailors at Southeast Regional Maintenance Center (SERMC) are responsible for maintaining an incredibly complex variety of equipment – gear boxes, pumps, turbines, blowers, compressors, fans and so much more.

Industrial equipment seldom fails without providing some kind of warning. More often than not the signs of looming failure, such as elevated vibration levels or high internal temperatures, go unnoticed during routine tasks. Small vibrations are difficult to detect and cause the equipment to run less efficiently.

Eventually the equipment will fail, resulting in major maintenance expenses due to failed bearings, couplings or other expensive machine components. However, those hidden clues, if discovered early, can pinpoint the nature, location, and even the severity of developing problems.

To that end, SERMC recently hosted Mr. Darin McDaniel from Emerson, a company that specializes in machinery health management, to hold training on the most modern vibration analysis equipment. Such resources are used to more easily evaluate and diagnose the Navy’s critical equipment.

The training provided a valuable learning opportunity for several SERMC Sailors pursuing the Outside Electrical NAMTS Navy Enlisted Classification (NEC), which requires Sailors to evaluate, diagnose and repair internal failures.

The new analysis tool is non-intrusive, meaning the four “channels” can be attached to the exterior of equipment while a portable spectrum analyzer records waveform signatures.

Analysis of this data makes it possible to diagnose:
• Mechanical wear in bearings, belts, couplings, gears, and support structures.
• Imbalances and misalignments.
• Other defects such as lubrication failure, bent shafts, etc.

Information gathered by the portable device is collected and used by SERMC Sailors to correct any problems before they become severe enough to negatively affect the gear.

“Our ability to deliver ships out of maintenance availabilities on time, with the highest quality is critical to the fleet. Our technicians’ ability to use vibration analysis on fleet equipment helps improve SERMC’s ability to deliver first-time quality while saving valuable resources,” said SERMC Commanding Officer, Capt. John Lobuono.

“It’s much cheaper in the long run to keep shipboard equipment running efficiently than it is to rebuild or replace a piece of gear,” said Electrician’s Mate 1st Class Carlos Genoa-Vargas. “The equipment we return to the fleet is highly calibrated and will run at peak efficiency.”

From L-R: Mr. Darin McDaniel explains how to read the information gathered by the portable vibration analysis tool to EM1 Carlos Genoa-Vargas, GSE3 Kyle Jones and EM2 Jeremy Comeau at Southeast Regional Maintenance Center (SERMC). SERMC’s new vibration analysis tool is a state-of-the-art, non-intrusive technology using a portable spectrum analyzer to record waveform signatures inside the machinery. (Photo by Scott Curtis.)
One way Puget Sound Naval Shipyard & Intermediate Maintenance Facility (PSNS & IMF), Detachment (DET) Everett is working on tying production work into the training necessary for completion of the NAMTS Job Qualification Requirement (JQR) is by utilizing the implementation of a designed Watertight door frame. This Watertight door frame is used as not only a training tool for the Watertight Closure Maintenance Technician JQR, but also as a jig for repair/maintenance to Watertight doors (currently 6 and 8 dog/wedge design doors). The jig allows the Watertight doors sent to PSNS & IMF, DET Everett to be tested for fit after repairs and sand blasting have been completed. This is done prior to applying the paint to the doors by flame spray. By using the jig to ensure proper fit after repairs have been completed, approximately two hours per day, per door is saved for ships in port. Time is also saved for Watertight door maintenance performed on ships in a Docking Selected Restricted Availability (DSRA) referred to as Dry Dock. Local ships in Dry Dock are docked in a shipyard in Seattle. Using the jig saves approximately four to six hours per day, per door, depending on traffic. Prior to using the jig for the fit test proper fit, maintenance personnel would have to transport the Watertight doors to the ship, fit the door to the installed frame and then transport the door back to PSNS & IMF, DET Everett, either for final preparation and painting or to continue repairs to the Watertight doors to ensure correct fitting when delivered to the command for final installation and work package completion. Utilizing the jig was suggested by the Subject Matter Expert (SME), Mark Figueredo, for the Outside Repair shop.

Another shop that is big on incorporating training into repair/maintenance is the Pump shop. The Pump shop at PSNS & IMF, DET Everett, is responsible for not only pump repair, but also for valve and heat exchanger repair. As part of the training, the Pump shop rebuilds various types of valves. When a job comes in to repair a valve, the SME, Darren Axtell, notifies the command to get as many Valve Repair JQR candidates as the command can support to assist in the task presented by the job package. In this way, the valve in question gets repaired for the ship requesting the work to be done and PSNS & IMF, DET Everett accomplishes the training required of the Valve Repair JQR. To accompany the shop doing the repairs to actual valves, the command utilizes the Virtual Task Trainer (VTT) program associated with the JQR. The VTT is a stand-alone program that allows the process to be attempted by a candidate on a computer. If the order of the steps to be performed correctly are out of sequence, the step the candidate is attempting will turn red and notify the candidate the task is not in accordance with the correct procedure.

PSNS & IMF, DET Everett is giving its Sailors every opportunity possible to train, learn and do in an effort to increase self-sufficiency at sea!
As the oldest rating in the U.S. Navy, Boatswain’s Mates (BM) carry a long and storied tradition. This tradition, steeped in a legacy of often overlooked yet critically vital taskings sometimes carries the weight of the U.S. Navy. For the BMs at Mid-Atlantic Regional Maintenance Center (MARMC), the arts of Rigging and Weight Testing are two of these unsung taskings that continue to ensure ships are mission-ready. For BM1 (SW) Drew Miller, accomplishing MARMC’s mission of preparing vessels for the Fleet goes hand-in-hand with qualifying Sailors in the NAMTS Rigging/Weight Testing Job Qualification Requirement (JQR) while keeping the traditions of the BM rating alive.

Coordinating the large number of jobs that Code 911A-Weight Test and Code 911B-Rigging have to complete requires an astute level of planning on the parts of BMC (SW/AW/EXW) Lawrence Mimbs and BM1 (SW) Drew Miller. As the respective senior military NAMTS qualifiers in the Weight Test and Rigging shops, they pay close attention to which Sailors need opportunities to complete specific line items in the Rigging/Weight Testing JQR and make sure they get the opportunity to do so. According to BM1 Miller, “The NAMTS program has assisted in the increased level of knowledge and fluidity of the MARMC Weight Test Shop. Sailors use their knowledge gained from acquiring the Rigger/Weight test Navy Enlisted Classification (NEC) to ensure the full capabilities of the Truman Strike Group and countless other ships deployed independently and within amphibious strike groups.”

Over the past quarter, the Weight Test and Rigging shops have completed more than 45 jobs across five ship classes. With jobs ranging from accommodation ladder and boat davit slewing arm davit repair certifications to MK 105 pendant and ammunition sling certifications, the Weight Test and Rigging shops have managed to meld mission readiness with qualifying Sailors by way of the NAMTS program. For seasoned qualifiers like BM1 (SW) Miller, it comes down to knowledge and opportunity, “The weight test shop has a wide variety of jobs that fall under our work list from ordnance handling equipment, 60-ton cranes, boat handling equipment, Replenishment at Sea (RAS) stations to a Landing Craft Air Cushion (LCAC) recovery winch,” he said.

As the Weight Test and Rigging shops accomplish more jobs throughout the fleet, BMC (SW/AW/EXW) Mimbs believes that eventually many of the Sailors who have earned the NAMTS Rigging/Weight Testing NEC will have the opportunity to transition to ships and pass this knowledge on to other Sailors. For NAMTS qualifiers and candidates, the importance of this continuity is not lost. Mimbs reinforced this belief, as he so eloquently stated, “to meld production and training, well, there is nothing more ready and relevant than that.”

“The NAMTS program has assisted in the increased level of knowledge and fluidity of the MARMC Weight Test Shop. Sailors use their knowledge gained from acquiring the Rigger/Weight test Navy Enlisted Classification to ensure the full capabilities of the Truman Strike Group and countless other ships deployed independently and within amphibious strike groups.”

~ BM1 (SW) Drew Miller
During the summer of 2018, Norfolk Naval Shipyard (NNSY) and Mid-Atlantic Regional Maintenance Center (MARMC) joined forces to address a fleet training deficiency identified by members of the Ship Organic Repair Capability Assessment Team (SORCAT).

In the course of several visits to afloat commands, Mr. Russell Lincoln from SORCAT recognized a recurring need for motor rewind training in the fleet and contacted Mr. Andrew Porter, NNSY Regional NAMTS Coordinator (RNC), to see what could be done to help. After months of research and collaboration with NNSY Shop 950 civilians, Fleet Maintenance Shops (FMS) military personnel, and MARMC, NNSY implemented the Navy Afloat Maintenance Training Strategy (NAMTS) Inside Electrical Repair Technician JQR. Not having the capability to man Shop 950 on its own, NNSY worked with MARMC to create an environment that could accommodate training for both commands while maintaining civilian leadership support for the initiative. This resulted in ten (10) MARMC Electrician’s Mates being selected to begin a four-month Temporary Assigned Duty (TAD) assignment to NNSY to work in the Motor Rewind Shop (Shop 950) and simultaneously enroll in the NAMTS Inside Electrical Repair Technician JQR.

The positive impact the MARMC Sailors had in the Motor Rewind Shop was immediately apparent. On top of assisting shop civilians with motor rewind operations and other various electrical jobs, the Sailors were getting expert training from shop subject matter experts. One Sailor, EM1 (SW) Wilson, put it this way, “I’m very impressed by the level of actual hands-on training throughout the shop. Some of the Sailors here have never seen or worked on this sort of equipment and for them to have that opportunity to not only repair the equipment but to do so under excellent supervision and support is extremely beneficial.”

The MARMC Sailors are nearly 75% done with their NAMTS Inside Electrical JQR and the NNSY RNC is anticipating all ten (10) earning their NAMTS Navy Enlisted Classification (NEC) Codes in Inside Electrical by the end of their TAD period. Once completed, MARMC has already identified ten (10) additional Sailors to rotate to NNSY to begin the process all over again.

The NNSY NAMTS program has enjoyed outstanding support from command leadership and various production shops where Sailors receive training. Civilian and military qualifiers alike work hard to provide the foundation for the NAMTS program’s three primary goals for Sailor training:

- Unit Self Sufficiency
- Sailor Professional Development
- Post-Navy Workplace Development

By adhering to these goals and taking advantage of hands-on training available at NNSY, the NAMTS program continues to prove its value in enhancing Navy maintenance initiatives and increasing Sailor readiness across the fleet.
The Diesel Repair Shop at Norfolk Naval Shipyard (NNSY) exemplifies what the Navy Afloat Maintenance Training Strategy (NAMTS) is all about; training confident and competent maintenance professionals. From a large group of dedicated shop civilians to an incredible array of diesel training aides, NNSY Diesel Repair training provides the very best for the Sailors working in the shop.

In July 2018, when the NNSY Regional NAMTS Coordinator (RNC) learned that the Diesel Shop needed a way to properly train Sailors in Rigid Inflatable Boat (RIB) maintenance, the hunt began to provide nothing less than an actual RIB to park at the NNSY Diesel Shop for the Sailors to work on.

Doing some research and chasing down different points of contact, the RNC finally got in touch with Mr. Jack Mathias, U.S. Navy Boat Inventory Manager from Naval Surface Warfare Center, Combat Craft Division (NSWC-CCD) out of Joint Expeditionary Base Little Creek-Fort Story. After explaining the situation, Mr. Mathias was extremely helpful and understood completely what the NNSY RNC was trying to accomplish. Being a U.S. Navy Boat Inventory Manager, Mr. Mathias was able to locate a 7-meter, non-operational RIB in his inventory that would be perfect as a static maintenance training aid for the NNSY Diesel Shop.

The NNSY RNC relayed this information to Mr. Michael Johnson, Diesel Shop Zone Manager, who began the process of routing the applicable paperwork to the shipyard commander to get authorization to receive the RIB. The approval letter was signed by Captain Torkelson, Commander NNSY, September 28, 2018, and forwarded to Mr. Mathias for processing.

On October 10, 2018, a flatbed semi arrived at the shipyard and delivered the RIB to the NNSY Diesel Shop. The RIB will provide NNSY Sailors the opportunity to work on several diesel processes associated with RIB maintenance including cooling systems, outdrives, steering systems, bilge pumps and fuel systems.
How Does SWRMC's NAMTS Program Define Success?

By Doug Scholl, Regional NAMTS Coordinator

The Regional NAMTS Coordinators (RNC), oversee the NAMTS program at various commands with different manpower, square footage and capability requirements. They communicate daily with Command Coordinators, Skill Area Coordinators, Work Center Supervisors and all Sailors who are enrolled. Following CNRMCINST 4700.10A and through communication with CNRMC Code 900 and Code 930, RNCs work to ensure the word is passed to local commands on expectations and setting the highest standards from the command and those Sailors graduating with a NAMTS Navy Enlisted Classification (NEC) Code.

The RNCs use metrics, reports, PowerPoints, pie charts, e-mails, phone conversations, and face-to-face meetings to collect data and gauge the program effectiveness to meet CNRMC’s and local command expectations.

One of the best moments for any RNC is informing their local command and CNRMC of achieving a first or an all-time high reporting metric, but RNCs must also deliver the bad news when certain metrics tend to slide in a direction that doesn’t meet expectations. From there, the RNCs work diligently with the command to correct the metric and return the program to those high standards.

At Southwest Regional Maintenance Center (SWRMC), the RNCs (Mr. Lawrence Burns and Mr. Douglas Scholl), Command NAMTS Coordinators (MMC(SW/AW) Eric Lawlor, ICC(SW) Larry Scott and HTC(SW) Timothy Nedzweckas), Commanding Officers (Captain Hugh Huck and Captain David Hart), and Code 900 Department Heads (John Robinson and Craig Cunningham) have seen many firsts. There have also been numerous records set: a record number of NAMTS NEC’s obtained in 2016 and 2017, implementing four new JQR areas, having the first United States Navy Sailor to hold both the Gas Turbine and Gas Turbine Electrical Repair NEC’s (soon followed by a second Sailor), having Sailors onboard earn three NECs during a standard tour, providing opportunities to Limited Duty Sailors and those Sailors earning and transferring with NAMTS NECs.

One constant at any command is change. As noted above, in three years, SWRMC has had three different Command Coordinators, two different Commanding Officers, two different Code 900 Department Heads. Sailors rotate in and out on a daily basis, many with eyes on furthering their career and others with eyes to end their service or to retire honorably. As the constant tide of change ebbs and flows within the command, the constant of high expectations, high standards, and Sailor development that takes place is something of which everyone at SWRMC can be proud.

SWRMC did not set a record for the number of Sailors earning their NAMTS NECs in 2018, however, in a command first, SWRMC has transferred 98 of 100 of Sailors back to the fleet with at least one NAMTS NEC; every one of those NECs is in the Sailors’ primary rating skill set.

Any organization that can show a ninety-eight percent return rate is a success! SWRMC is certain of the capabilities in its graduating Sailors and knows ships are getting Sailors forged from the shop deckplates here at SWRMC; these are Sailors who are ready for battle at sea.

As Sailors depart for their next tours and as SWRMC looks to the future, the command is excited for all the good things that lie ahead!

NAMTS by the Numbers:
2018 Statistics

NECs Available: 19
Training Sites: 27
Current Enrollees: 1,422
Sailors Holding NECs: 3,561
Transfers to sea: 419
Graduates: 572 Sailors earned 615 NECs
The Master at Arms Rate in the Navy is to I-Level Production as salt is to sugar, overwhelmingly different. But just like combining the ingredients makes a mouth-watering dessert, combining NAMTS NECs with a hard-charging Master at Arms can make one spectacular Sailor. You don’t have to take our word for it; the proof is in the pudding, or in this case, in Petty Officer 1st Class (SW/AW) Jerald Hallford of Southwest Regional Maintenance Center (SWRMC).

Hallford works in SWRMC’s Master at Arms office where he serves as the department Leading Petty Officer for Corporate Operations and helps maintain good order and discipline across the command of over 2,000 Sailors, civilians, and contractors. Not one to shy away from a challenge, Hallford signed up to earn the Valve Repair NEC under the NAMTS program in January 2018.

“NECs can help advance Sailors’ careers, but they mainly increase knowledge,” said Hallford. “Even if someone is not an expert on a subject, just knowing the fundamentals of something can lead to more efficient production across the board.”

After successful completion of the Valve Repair NEC, he subsequently signed up for and completed the Watertight Closure Repair NEC, followed by the Rigging and Weight Testing NEC. Hallford believes the NECs will help him in the fleet both on the job and understanding what other Sailors are going through. He also uses himself as an example with his Sailors on how to balance executing the mission with training to support the future fleet.

“Knowing more can never hurt, not only to learn more about other jobs in the Navy, but it also helps with networking, which makes me better at my job,” said Hallford.

Hallford is the second Sailor to earn three NAMTS NECs while working at SWRMC. As of early October, SWRMC has 150 NEC holders, 269 Hull, Mechanical, and Electrical (HM&E) rated Sailors enrolled in the program, and 229 additional enrollees. Additional enrollees are Sailors working on their second NEC or Sailors who are HM&E assigned outside of normal assignments.

“NAMTS is important for what it accomplishes,” said Craig Cunningham, Production Department head. “It standardizes the Sailor repair skill competencies through hands-on, real world, I-Level shop production.”
Hawaii Regional Maintenance Center (HRMC) provides a myriad of training opportunities for Sailors to qualify for NAMTS Navy Enlisted Classification (NEC) Codes.

Shining Pearl of Pearl Harbor Naval Shipyard: 31-T Gas Turbine Shop

The 31-T Gas Turbine Repair Shop has been hard at work restoring multiple ships to working order over the last six months. GSCS (SW) Colt Schad, GSMC (SW) Wing Ho and GSM1 (SW/AW) Thomas Paz lead the shop of engineers to prepare four ships for deployments to the 5th and 7th Fleet Areas of Responsibility (AOR).

Shop 31-T performed the following repairs: LM2500 1st Stage Blade Inspection and Compressor Blade Blend aboard USS John Paul Jones (DDG 56), USS Hopper (DDG 70), USS Preble (DDG 88) and USS William P. Lawrence (DDG 110); LM2500 Accessory Gear Box Link Mount Replacement aboard USS Port Royal (CG 73); NR2 Gas Turbine Generator 501-K34 change out onboard USS Chung Hoon (DDG 93); LM2500 2B GTM GTB12/24 Power Turbine Inspection aboard USS Chung Hoon (DDG 93); NR1 Gas Turbine Generator 501-K34 Turbine Inlet Case change out aboard USS Chafee (DDG 90); NR1, NR2, and NR3 Gas Turbine Generator 9130 AYB-026 aboard USS O’Kane (DDG 77); LM2500 Compressor Blade Balancing and Blade Blend aboard USS Milius (DDG 69). The engineering skills of the sailors in Shop 31-T proved crucial to these ships meeting schedule deadlines and performance expectancies. Despite the hectic and taxing work schedule, the shop also completed multiple GTB22 carboloy pad and blade inspections, which allowed 7 sailors to qualify for NAMTS NECs.

Rigging Mock-up Construction

In an effort to increase training experience and depth of knowledge, HRMC developed a hands-on training aid mock-up, for performing general shipboard rigging services in a safe environment. Their A-frame mock-up increases training comprehension and allows for training of actual shipboard rigging encompassing Fundamental line items; 172.11 General Rigging Fundamentals, 380.01 Through Ship Rigging, 380.02 Rig Equipment on to Mounting Foundation and 380.03 Rig Equipment off of Mounting Foundation. When actual work becomes available, HRMC Sailors are better prepared to complete the “hands-on” process requirement.

NAMTS Graduates

HRMC had a great year as they finished it with a total of 45 Sailor graduates, enriching the U.S. Navy with an outstanding and continuously expanding group of subject matter experts. Of the 45 HRMC Sailors who have graduated from the NAMTS program, 21 are multiple NAMTS NEC holders!
NAMTS was established to improve strike force organic maintenance capability, material self-sufficiency and enhance operational readiness. Currently, 21 ships in the fleet have been stood up as NAMTS Afloat Training Activities (NATA) and are able to award any one of 19 select NAMTS NECs to the Sailors enrolled. Utilizing an Afloat NAMTS Coordinator to assist in program management, the ships have become a true “SEA” School. In addition, the commands that have become a NATA are able to partner with Regional Maintenance Centers and Naval Ship Yards to accomplish competency training that may not be available aboard. NATA commands also participate in JQR reviews and new JQR/NEC development. Each afloat unit has unique challenges in flexible ship scheduling, emergent work, manning shortfalls and the ever changing geopolitical threats facing a crew when getting underway. Overcoming those challenges takes the commitment of a dedicated team of Sailors who strive to improve themselves at every opportunity offered. With the ability to receive on-the-job, rating-specific training, NATA ships are developing a better-rounded Sailor and improving fleet organic maintenance capabilities.

C DR Frank Gasperetti (CHENG), CDR Gregory Notaro (Production Officer), DCCM Horace Johnson, MMCM Levere Rose and EMC JohnPaul Velasquez all consider NAMTS to be an outstanding opportunity to get Sailors advanced training to meet the CNO’s vision to be ready now to go to war and win. The CHENG stated, “we will build a self-sufficient force through the NAMTS program by qualifying our Sailors to be Maintenance Warriors at sea.” Master Chief Horace said, “We must be ready to sustain battle damage and continue to fight the ship while repairing the damage.” And CDR Notaro says, “NAMTS and SORCAT are the exact tools we need aboard the ship to train a maintenance force to keep the ship operational at all times.” There is no doubt this leadership team will use NAMTS to build a force of SMEs to keep the ship fighting. Having 27 Sailors enrolled in 9 different JQRs the ship trains in Air Conditioning & Refrigeration, Heat Exchanger Repair Technician, Inside Electrical Repair Technician, Inside Machinist, Outside Electrical Repair Technician, Pipefitter, Pump Repair Technician, Shipfitter and Valve Repair Technician. Since becoming a NATA, the ship has maintained active monthly participation from all enrolled Sailors.

MAster Chief Phelps (Engineering Department Master Chief) recently selected HTC Gary Reed to be the Command NAMTS Program Coordinator aboard USS Kearsarge (LHD 3) and for good reasons. HTC Gary Reed reported to USS Kearsarge after a successful tour at MARMC as the Command NAMTS Coordinator and he is looking forward to energizing the ship’s NAMTS program.

HTC Gary Reed said, “We fix a lot of things aboard our ship, a lot of technically difficult things and our sailors acquire the skills necessary to perform maintenance on a variety of ship systems. Our job as Chiefs is to train ourreliefs to be technical experts, to keep our ship at sea and in battle to keep our ship fighting; NAMTS is probably the best tool ever produced to meet that objective if we just use it!” The ship has ten personnel enrolled in five different JQRs (Air Conditioning & Refrigeration, Heat Exchanger Repair Technician, Inside Machinist, Shipfitter and Valve Repair Technician.

A board USS Bush (CVN 77), there has been a lot of phenomenal and technically difficult work accomplished throughout the ship. Specifically the crew has been rewinding motors, fixing pumps, repairing valves, performing watertight door maintenance, pipefitting and shipfitting work.

CDR Cory Groom (CHENG), BMC Bo Miller (Command NAMTS Coordinator) and MM1 Joshua Spalding (Assistant Command NAMTS Coordinator) all agree that there are great things happening all around the ship due to the accomplishments of the sailors enrolled in NAMTS. BMC Bo Miller stated, “I believe the NAMTS initiative is one of the most important initiatives for the future of our Navy.” With the assistance of MM1 Spalding, Chief Miller has completely turned the program around and currently has thirty-nine sailors enrolled in 9 different JQRs (Heat Exchanger Repair Technician, Inside Electrical Repair Technician, Inside Machinist, Outside Electrical Repair Technician, Pipefitter, Rigger/Weight Tester, Shipfitter and Watertight Closure Maintenance Technician.

USS Bataan (LHD 5) is in an extended availability at BAE shipyard in Norfolk, VA. During that time, the ship found it difficult to get ship’s force involved with maintenance onboard the ship because of contractual conflicts. But this did not stop the ship as they began to coordinate with Mr. Andrew Porter (Regional NAMTS Coordinator for MARMC) to pair up and train personnel alongside Maintenance Warriors from the Mid Atlantic Regional Maintenance Center in Norfolk, VA, to advance the students enrolled in NAMTS. The twenty-three Sailors enrolled in NAMTS are led by MMC Michael Bratton, who serves as the Command NAMTS Coordinator. The ship is currently training personnel in the following JQRs: Heat Exchanger Repair Technician, Inside Electrical Repair Technician, Interior Communications Repair Technician, Pipefitter, Pump Repair Technician, Valve Repair Technician and Watertight Closure Maintenance Technician.

(Continued on page 28)
(Continued from page 27)

SS Harry S. Truman (CVN 75) has thirteen sailors enrolled in Air Conditioning & Refrigeration, Heat Exchanger Repair Technician, Inside Machinist, Outside Electrical Repair Technician, Pipefitter, Shipfitter, Valve Repair Technician, Watertight Closure Maintenance Technician, Interior Communications Repair Technician and Rigger/Weight Tester.

SS John C. Stennis (CVN 74) shifts colors for a change of homeport and the NAMTS program gains new leadership with ENS Andrew Pappas taking over as the Engineering Training Officer; he will also be the NAMTS Program Manager aboard. MMC (SW/AW) Sean Adams is the Quality Assurance LCPO and the new Command JQR Coordinator. ENS Pappas stated that he believes, "Sailors will stand out in the Command above their peers by completing the JQRs, thereby promoting a diverse and capable force throughout the Navy." "This is an amazing program that will take Sailors to new levels in their careers. Given opportunities for hands-on-training and knowledge, Sailors will be successful in the Navy and in the civilian workforce. Also, it will improve advancement percentages and ensure first time quality work all around," said MMC Adams. The ship has 49 Sailors enrolled in 7 JQRs (Air Conditioning & Refrigeration, Diesel Engine Repair Governor & Injector Repair Technician, Heat Exchanger Repair Technician, Hydraulics Repair Technician, Inside Machinist, Outside Electrical Repair Technician, Pump Repair Technician, Shipfitter, Valve Repair Technician, General Shipboard Welder/Brazer and Watertight Closure Maintenance Technician).

SS NIMITZ (CVN 68), with the docking phased incremental availability (DPIA) well underway, has its crew taking advantage with mass overhauls being conducted. “Being in an availability and having the Carrier Engineering Maintenance Assist Team (CEMAT) available to aid with NAMTS training and qualifications is a force multiplier. The expertise that CEMAT brings to the table is invaluable for my Sailors and for this program,” said CDR Charles Jones, Chief Engineer. There are currently 42 Sailors enrolled in the NAMTS program across 10 different JQRs including; Hydraulics Repair Technician, Inside Machinist, Interior Communications Repair Technician, Outside Electrical Repair Technician, Outside Electrical Repair Technician, Pipefitter, Shipfitter, Valve Repair Technician, Watertight Closure Maintenance Technician, Interior Communications Repair Technician and Rigger/Weight Tester.

SS Theodore Roosevelt (CVN 71) looks back at a successful 2018 while focusing their sights on continuing steady progress in 2019. The ship has graduated four (4) Sailors this past year in the Air Conditioning and Refrigeration (AC&R), Hydraulic Repair, Pump Repair and Valve Repair JQRs. Sailors completing these JQRs proved to themselves that the program can be accomplished aboard.

These four (4) NECs add to their total of eleven (11) qualified Sailors aboard since NAMTS was implemented in 2017. To date, Roosevelt has graduated the most Sailors for any aircraft carrier stationed on the West Coast.

Additionally, the ship is looking to add to their inventory by reviewing the General Shipboard Welder/Brazer and Shipfitter JQRs. These additional JQRs will open up the NAMTS program to Sailors in their Hull Technician (HT) Shops.

Command NAMTS JQR Coordinator MMC (SW) Christopher Willard recognizes that completing the AC&R JQR helped to bolster his already competitive package which effectively led to his selection to Chief Petty Officer during the FY-19 CPO Board.

Although currently engaged in an intensive Planned Incremental Availability (PIA), the command looks forward to utilizing those skills learned through NAMTS and passing that knowledge onto the next generation of Sailors currently working on their JQRs.

SS Iwo Jima’s (LHD 7) NAMTS training has allowed her to stay in the fight. During her recent deployment, MM3 Ferrari and MM2 Lanum made numerous repairs to the ship’s Air Conditioning system to help maintain necessary cooling for vital equipment throughout the ship. Petty Officer Ferrari, who is a recent NAMTS AC&R NEC graduate, spearheaded the charge. He took what he learned through the program and was able to have all six A/C plants up and operational for the first time in over 2 years! While it is primarily used for the cooling of electronic equipment, the crew of 1,100 and compliment of 2,500 Marines and staff greatly enjoyed beating the heat while in the Persian Gulf. Iwo Jima’s Command NAMTS Administrators are DCC Wegner and GSMC Bochanski.

(Continued on page 29)
USS Abraham Lincoln (CVN 72) currently has ten sailors enrolled in four JQRs (Heat Exchanger Repair Technician, Inside Machinist, Pipefitter and Valve Repair Technician).

Although not a NAMTS Afloat Training Activity, the Commanding Officer of USS Vicksburg (CG 69) realizes a golden opportunity when he sees one. CDR Richard Jimenez reached out to the NAMTS team to partner his command with MARMC and has sent personnel TAD for NAMTS qualifications while the ship is in a major overhaul at BAE shipyard. CDR Richard Jimenez said, “I need my sailors tough and in order to accomplish this, I need training like NAMTS to help make our Sailors technically capable of fixing the ship when the going gets tough.” NAMTS training is a top priority for USS Vicksburg and the ship currently has nine personnel TAD to MARMC enrolled in four different JQRs (Valve Repair Technician, Watertight Closure Maintenance Technician, Diesel Engine Repair Governor & Injector Repair Technician and Gas Turbine Repair Technician).

NAMTS & SORCAT at SNA’s National Symposium

The NAMTS and SORCAT teams were represented at the Surface Navy Association’s National Symposium January 15-17, 2019, in Arlington, VA. The event’s theme was “Ready, Agile, Focused: Own the Fight,” and it was the perfect opportunity for naval leaders, government officials and members of private industry to discuss a broad range of issues regarding the surface community.

Calling it “the most important task before us in Surface Warfare,” Vice Adm. Rich Brown, Commander, Naval Surface Forces, urged the Surface Warfare community to drive toward a culture of excellence, reinvigorate mission command, and prepare to transition readiness into lethality to meet the challenges of a renewed Great Power Competition.

“The urgent demands of a renewed Great Power Competition require us to drive toward a culture of excellence — a culture that recognizes that standards are the baseline; a culture of rapid innovation, of creativity across all ranks, and of outcomes that favor our strategic needs,” said Brown. “We must instill toughness and trust in our Sailors as the foundation for this culture of excellence.”

NAMTS and SORCAT are two means by which that culture of excellence is supported. Commander, Navy Regional Maintenance Center (CNRMC) trains Sailors through the NAMTS Program by utilizing I-Level hands-on maintenance production to “forge Maintenance Warriors,” who are competent and confident in their ability to own, maintain and operate their shipboard equipment. A critical element of the NAMTS program, SORCAT is a continuous process that starts 15 months prior to a ship’s deployment and continues with quarterly contact. When fully implemented, each U.S. Navy surface ship will benefit from SORCAT.
Navy Afloat Maintenance Training Strategy and its Ship Organic Repair Capability Assessment Team effort exhibited at the American Society of Naval Engineers’ Fleet Maintenance & Modernization Symposium (FMMS), September 17-20, 2018, in Virginia Beach, VA. The event’s theme was “Readiness, Wholeness and Future Capability– Keys to Expanding Maritime Superiority.” FMMS is conducted annually, alternating between Hampton Roads and San Diego, bringing together the entire naval ship maintenance and modernization community like no other forum.

This forum seeks to engage everyone who has a stake in building, repairing, sailing, innovating, updating, training, fighting, and winning on or from the sea on a US or allied military vessel. We are stronger when people with different backgrounds, education, jobs, trades and experience discuss issues and solutions facing the fleet.

Visit us at:

- **MegaRust / May 14-16, 2019 / Portsmouth, VA**
- **Fleet Maintenance & Modernization Symposium / August 7-9, 2019**
 San Diego Convention Center
- **Surface Navy Association West / August 22, 2019 / Pierside, Naval Station San Diego**

(FMMS photos by Kat Ciesielski.)
Mid-Atlantic Regional Maintenance Center

NEC 736B - Pump Repair Technician
EMN1 (SW) Stephen Barbee
MM2 Raymond Hinnant Jr

NEC 797A - Rigger / Weight Tester
BM1 Luis Delacruz
BM3 (SW) Mark Mcshane
BM2 (AW) Brandon Townsend
BM2 (SW) Orlando Orta Jr
BM2 (SW/IW) Darrenangelo Pineda
BM3 (AW) Sharif Burris
BM3 (SW/AW) Priscilla Torres

NEC 834A - Valve Repair Technician
EN2 Marc Saade
MM1 Jose Robles
MM1 (SW/AW) Adam Veitch
MM2 (SW) Franchelle Moore
MM1 (SW) Cristian Juarez
MM2 (SW) Marvin Cuaresma
MM3 Edward Miles Jr
GSM2 (SW) Marie Taylor

NEC 835A - Watertight Closure Maintenance Technician
DC1 (AW) Jeffrey Ronshausen
DC1 (SW) Brandon Dunbar

NEC U08A - Gas Turbine Repair Technician
GSM2 (SW) Tom Moua

NEC U11A - Gas Turbine Electrical Repair Technician
GSE3 Paul Midgett
GSE1 (SW) Whittney Richard
GSE2 (SW) Jeremy Shelvin
GSE1 (SW) Russell Skov
GSE2 (SW/AW) Gabriela Bey

NEC U33A - Inside Machinist
MRC (SW/AW) Ignacio Lopez
MR3 David White Jr

NEC U39A - Outside Electrical Repair Technician
EM1 Jason Polson
EM2 Andrew Mcdonald
EM2 Derek Bigpowers
EM2 Mahamadi Ouedraogo
EM3 Brandon Fossum
EM1 (SW) Gregory Brown

Norfolk Naval Shipyard

NEC 736B - Pump Repair Technician
MM1 (SW) Cory Dufeld
MM1 (SW) Joshua Koehne

NEC 834A - Valve Repair Technician
MMN1 (SW) Brandon Cramer
MM2 (SW) Ariel Marquis
MMN1 (SW) Matthew Reid
MM1 (SW) Ahohoenou Fahin
MM1 (SW) Amy Khanthavongsay

NEC U17A - Air Conditioning and Refrigeration
MM1 (SW) Joshua Grimes

(Continued on page 32)
Norfolk Naval Shipyard, cont’d.

NEC U39A - Outside Electrical Repair Technician
- EM2 Wesley Hilliard
- EM1 (SW) Melissa Garrison
- EM2 (SW) Jordan Holland
- EM2 (SW) Erica Merron
- EM2 (SW) Heather Pierce

NEC U40A - Inside Electrical Repair Technician
- EM2 Kyle Milburn
- EM2 (SW) Errol McGuire
- EM1 (SW/AW) Adam Wilson
- EM3 (SW) Christopher Quint
- EM2 (SW) Ernest Sosa III
- EM2 (SW) Quintin Brooks
- EM2 (SW/AW) Comna Douti
- EM3 (SW) Devin Leteff
- EM2 (SW) Nathan Stahl
- EM2 (SW) Anthony Delikat

NEC U54A - General Shipboard Welder/Brazer
- HT3 Brian Darcy
- HTFN Marco Carrasco
- HT2 (SW) Michael Hurst
- HT2 (SW/AW) Aaron Patterson
- HT3 (SW) Kyle Smothers
- HT2 (SW) Andrew Nichols
- HT1 (SW) Sean Roberts

Pearl Harbor Naval Shipyard & IMF

NEC 834A - Valve Repair Technician
- GSM2 (SW) Jessie Gandara Jr
- GSM2 (SW) Louis Stafford Jr
- MM2 (SW) Jalen Allen
- GSM2 (SW) Nathaniel Doss
- EN2 (SW) Mark Geter
- EM2 (SW/AW) Joseph Pierce
- MM2 (SW) Aaron Ross
- MM2 (SW) Patrice Braswell
- MM1 (SW) Jarryd Walters
- GSM2 (SW) Virgilaustin Corpuz

- MR2 (SW) David Osborne
- GSM1 (SW) Thomas Paz JR
- HT1 (SW) James Falkner
- EN2 (SW) Joe Hernandez
- EN1 (EXW) James Brewer
- GSM2 (SW/AW) Michael Evans
- GSM1 (SW) Antwan Griffin
- GSM2 (SW) Xiao Shan
- HT1 (SW) John Stull
- MM1 (SW) Jesse Johnson

NEC 835A - Watertight Closure Maintenance Technician
- MM2 (EXW) Samuel Duodu
- GSM2 (SW) Xiao Shan
- GSM2 (SW/AW) Michael Evans
- MM1 (SW) Joseph Coleman
- EN1 (AW) Jake Soares
- EN2 (SW) Joe Hernandez
- HTFA Chelsy Moore
- DC2 (SW) Talyn Meadows
- MM3 Troy Jaynes
- MM2 (SW) Alyssa Dorn
- HT1 (SW) James Falkner
- DCC (SW/AW) Melissa Mayer
- EN1 (SW/AW) Peter Borges

NEC U08A - Gas Turbine Repair Technician
- GSM2 (SW) Amber Larry
- GSM2 (SW) Skyala Thomas

NEC U08A - Gas Turbine Repair Technician, cont’d.
- GSM2 (SW) Virgilaustin Corpuz
- GSM1 (SW) Thomas Paz JR
- GSM2 (SW/AW) Michael Evans
- GSM1 (SW) Antwan Griffin
- GSM2 (SW) Xiao Shan
- GSM1 (SW) Jermaine Piper
- GSM2 (SW) Damien Wiley
- GSM2 (SW) Kenneth Pelaez
- GSM2 (SW) Jessie Gandara JR
- GSM2 (SW) Louis Stafford JR
- GSM1 (SW) Jermaine Johnson

NEC U11A - Gas Turbine Electrical Repair Technician
- GSE2 (SW) Carolyn Jones

NEC 797A – Rigger / Weight Tester
- BM2 (SW) Brian Anderson II
- EN1 (SW) Daniel Neville

(Continued on page 33)
NEC U47A - Shipfitter
 HT3 Niaja Colleton
 HTFN Giovanna Guzman
 HT3 Cameron Rox
 HT1 (SW) Joshua Bemowski
 HT1 (SW) John Stull

NEC U17A – Air Conditioning and Refrigeration
 MMC (SW/AW/IW) Dereck Egbinuwe

NEC U26A – Diesel Engine – Governor & Injector Repair Technician
 ENC (SW) Curtis Kimber
 EN1 (SW) Jake Soares
 EN2 (SW) Jordan Alcantra
 EN2 (SW/AW) Fionamae Roces
 EN1 (SW) Brandon Shelton
 EN2 (SW) Edgar Moreno

Trident Refit Facility, Bangor, WA

NEC 736B - Pump Repair Technician
 MM3 Trinity Lozito
 MM1 (SW/EXW) Jonathan Hurley
 MM2 (SW/EXW) Joshua Johnson
 MM3 (SW) Rodney Richardson Jr
 MM1 (SW) John Whitby

NEC 761A - Hydraulic Repair Technician
 GSM2 (SW) Tyler Borders
 MM2 (SW) Carter Dandridge
 MM2 (SW) Corydon Donnally
 MM3 (SW/AW) Armando Gutierrez
 MM1 (SW) Anthony Keen
 MM1 (SW) Stanley Maitem
 GSM2 (SW) Enrique Martinezcarballo
 MM2 (SW) Samuel Mcneil Jr
 MM2 (SW) Andrew Ortiz
 GSM2 (SW) Jessica Porter

NEC 834A - Valve Repair Technician
 MM2 (SW) Yuki Hodgkiss
 MM2 (SW) Malvin Manlapid
 MM2 (SW) Douglas Oreilly

NEC 835A - Watertight Closure Maintenance Technician
 HT1 (SW) Matthew Bradley
 HT1 (SW) Ryan Haddock
 HT1 (SW/AW) Joshua Maza
 HT2 (SW) Jaycob Sealock
 HT1 (SW/AW) James Silwood

NEC U17A - Air Conditioning and Refrigeration
 MM1 (SW) David Dennis
 MM1 (SW/EXW) Cywel Lopez

NEC U18A - Heat Exchanger Repair Technician
 MM2 (SW) Darrell Coggins Jr
 GSM1 (SW) Ollie Dunlap IV
 MM1 (SW/AW) Jamalli Hill

NEC U34A - Outside Machinist
 MM1 (SW/AW) Eric Marroquin
 MM1 (SW/AW) Janelle Menzel

NEC U39A - Outside Electrical Repair Technician
 EM2 (SW/AW) Aaron Broma
 EM2 (SW) Calvin Dunn Jr
 EM1 (SW) Xingru Huang
 EM3 (SW) Aaron Hull
 EM2 (SW) Matthew Kram
 EM2 (SW/AW) Alexander Mock
 EM2 (SW/IW) Jaggerdean Pique

NEC U40A - Inside Electrical Repair Technician
 EM2 Ian Markham
 EM2 (SW) Julio Balisacan Jr
 EM2 (SW) Will Davis
 EM2 (SW) Jaramie Drew
 EM1 (SW) Abeeuk Nksiahmills
 EM2 (SW/AW) Scott Parrish
 EM1 (SW) Richard Price II
 EM2 (SW) Asuka Shavers
 EM2 (SW) Michael Valdez

NEC U47A - Shipfitter
 HT2 (SW) Derek Bronson
 HT2 (SW) Jacob Campbell
 HT1 (SW) Marshall Heiland
 HT1 (SW) Thomas Hislop

NEC U52A - Pipefitter
 HT3 (SW) Jacob Lopez
 HT1 (SW) Adam Welchel
GRADUATES

Southeast Regional Maintenance Center (SERMC)

NEC 736B - Pump Repair Technician
- GSM2 (SW) Takesha Anderson
- MM3 (SW) William Johnstone III
- MM2 (SW) Tyler Lettre
- MM2 (SW) Katherine Mosquera
- GSM1 (SW) Edel Negroncorrea
- GSM2 (SW) Jasmine Pruitt
- GSM2 (SW) Yohance Robles
- GSM3 (SW) Hendrik Vanwingerden
- MM2 (SW/AW) Eleanor Lopez
- MM1 (SW/AW) Garfield Swen

NEC 797A - Rigger / Weight Tester
- BM2 (SW) Jeffrey Ferris
- BM2 (SW) Adam Flota
- BM3 (SW) Antonio Hall
- BM2 (SW) Henry Jackson III
- BM2 (SW) Alton Limehouse Jr
- BM2 (SW) Gregory Lomax
- BM2 (SW) Christopher Morey Jr
- BM2 (SW) Nicholas Rodriguez
- BM2 (SW) Michael Smith
- BM3 (SW) Lajerrick Taylor
- BM2 (SW) Jonathan Valles
- BM1 (SW/AW) Devin Fremin
- BM2 Melynn Richardson

NEC 834A - Valve Repair Technician
- DC2 (SW) Shennon Bonus
- EN1 (SW) Jacob Foster
- DC2 (SW) Bianca Garza
- MR1 (SW) William Lemaitre
- FC1 (SW) Sterling Mack
- MM1 (SW) Wing Mok
- MM2 (SW) Matthew Munda
- MM2 (SW) Joshua Myers
- EN1 (SW) Angelo Padilla
- ENC (SW) Evelyn Padinirizarry
- MM1 (SW) Autumn Rice
- EN1 (SW) Juan Rodriguez
- HTC (SW) Kyle Timm
- MM2 (SW) Lindsay Wright
- DC1 (SW/AW/IW) Scott Loehndorf

NEC 835A - Watertight Closure Maintenance Technician
- DC1 (SW) Solomone Finau
- MM2 (SW) Spencer Moore
- EN1 (SW) Juan Rodriguez
- DC2 (SW) Daniel Romo Jr
- DC2 (SW) Jacob Stein
- MM1 (SW/AW) Michael Smith

NEC U18A - Heat Exchanger Repair Technician
- MM2 (SW) Michael Coler
- MM1 (SW) Joshua Johnson
- MM1 (SW) Pauljames Salas Jr
- NEC U34A - Outside Machinist
- MM2 (SW) Joshua Myers
- MM2 (SW) Larry Parrish Jr

(Continued from page 35)
Southeast Regional Maintenance Center (SERMC)

NEC 834A - Valve Repair Technician
- MR2 (SW) Thomas Evans
- EN1 (SW) Brittney Gatchalian
- MMC (SW) Bailey Thompson
- MM2 (SW) Kyle Walden

NEC 835A - Watertight Closure Maintenance Technician
- DC1 (SW) Courtney Heatley
- DC1 (SW) Daniel Lucas
- DC1 (SW) Camellia Ngirmang
- GM1 (SW/AW) Konon Gill
- BM2 Deonna Wiggins

NEC U08A - Gas Turbine Repair Technician
- GSM2 (SW) Ken Andoh
- GSM2 (SW) Corry Johnson
- GSM1 (SW) Adam Mulherin

NEC U11A - Gas Turbine Electrical Repair Technician
- GSE1 (SW) Jonathan Cormier
- GSEC (SW) Boubaker Fofana
- GSE1 (SW) Brandon Longworth
- GSE2 (SW) Adam Natal
- GSE2 Kayla Newman

NEC U18A - Heat Exchanger Repair Technician
- MM2 (SW) Brandon Beverly
- MM1 (SW) Jeffery Hardel
- MM2 (SW) David Kamara II
- MM2 (SW) Jason Plum
- MM3 (SW) Jourdun Powell
- MM1 (SW/AW) Arman Zarae

NEC U26A - Diesel Engine-Governor & Injector Repair Technician
- EN2 (SW) Marleen Pagan
- EN2 (SW/AW) Brian Sutton

NEC U33A - Inside Machinist
- MR2 (SW) Matthew Dandy
- MR2 (SW) Andrew Rose

NEC U34A - Outside Machinist
- GSM2 (SW) Takesha Anderson
- MM2 (SW) Jeffrey Kinds II
- GSMC (SW) John Pinkston Jr
- MM2 (SW/AW) Eleonor Lopez
- MM2 (SW/AW) Aaron Wells
- MMC (SW/IW/AW) Alhaji Sesay

NEC U40A - Inside Electrical Repair Technician
- EM2 (SW) Travis Bishop
- EM2 (SW) John Landers III
- EM2 (SW) Thanh Tran

Southwest Regional Maintenance Center (SWRMC)

NEC 797A - Rigger / Weight Tester
- BM3 Sarah Bednarski
- BM2 (SW) Tonia Guerin
- BM2 (SW) Francisco Ilie
- BM2 (SW) Megan Barrious
- MA1 (SW/AW) Jerald Halford
- BM2 (SW/EXW) Brian Joseph
- BM2 (SW/EXW) Guanquin Sun

NEC 834A - Valve Repair Technician
- MMN3 (SW) Bethany Eckert
- GSM1 (SW) Rafael Salazarromo
- MM2 (SW) William Jordan
- MM2 (SW) Camden Reid
- GM1 (SW/AW) Kyle Roest

NEC 835A - Watertight Closure Maintenance Technician
- AS2 (AW) Wesley Andris
- HT3 (SW) Rohan Taylor
- ET2 (SW) James Gonzales
- DC3 (SW) Steven Hutchinson
- MA1 (SW/AW) Jerald Halford
- DC1 (SW/AW) Megan Salazar
- MA1 (SW/AW/EXW) Jason Oliver
- EMN1 (SW/AW/IW) Serita Lyles

NEC U08A - Gas Turbine Repair Technician
- GSM2 (SW) Megan Taylor

NEC U17A - Air Conditioning and Refrigeration
- MM1 (SW) Brandon Reese
- MM1 (SW/AW) Chibuzor Nwachukwu

(Continued from page 34)
Southwest Regional Maintenance Center (SWRMC)

NEC U26A - Diesel Engine-Governor & Injector Repair Technician
- ENC (SW) Robert Ethington
- EN2 (SW) Bradley Estep
- ENC (SW) Taylor Nguyen
- EN2 (SW) Chauncey Ang
- EN2 (SW) Courtney Heard
- EN2 (SW) Cezar Jazmin
- EN2 (SW) Morgan Sprague

NEC U34A - Outside Machinist
- MM2 (SW) Jordan Williams
- MM2 (SW) Diana Murga
- MM1 (SW) Leigh Striker
- MM3 (SW) Xiaoxu Ma
- MM3 (SW) Hung Nguyen
- MM2 (SW/AW) Kera Archambeault
- MM2 (SW/AW) Gary Zhen
- MM2 (SW/AW) James Mbuthia

NEC U39A - Outside Electrical Repair Technician
- EM2 (SS) Carl Childers
- EM2 (SW) Matthew Guffey

NEC U40A - Inside Electrical Repair Technician
- EM2 (SW) Ken Arnett

NEC U47A - Shipfitter
- HT3 (SW) Jincuyae Anderson
- HT2 (SW) Brian Danner
- HT3 (SW) Joel Rogersorwatkins
- HT2 (SW/AW) Carissa Humphrey

NEC U52A - Pipefitter
- HT2 (SW) David Florido
- HT2 (SW) Rory Johnson

NEC V82B - Interior Communications Repair Technician
- IC1 (SW) Taoﬁa Garcia
- IC2 (SW/AW) Labradford Eagledeer

USS Iwo Jima (LHD 7)

NEC 736B - Pump Repair Technician
- MM3 (SW) Nicholas Dietrich

NEC 834A - Valve Repair Technician
- MM2 (SW/AW) Jarrod Wright
- MM2 (SW/AW) Jasmine Green
- MM2 (IW) Jamiaya Coston

NEC U40A - Inside Electrical Repair Technician
- EM3 (SW) Nathaniel Rollins

USS Theodore Roosevelt (CVN 71)

NEC U17A - Air Conditioning and Refrigeration
- MM1 (SW/AW) Koffi Afokpa

USS Dwight D. Eisenhower (CVN 69)

NEC 834A - Valve Repair Technician
- MM2 Christopher Pollock
- MM2 (AW) Clinton Calhoun III
NAMTS Training Available at Various Shore Maintenance Facilities

<table>
<thead>
<tr>
<th>Former NEC</th>
<th>Current NEC</th>
<th>NEC Title</th>
<th>Ratings</th>
<th>MARMC</th>
<th>NNSY</th>
<th>SERMC</th>
<th>SWRMC</th>
<th>PNS DET SD</th>
<th>TRF Bangor</th>
<th>PSNS & IMF</th>
<th>HRMC</th>
<th>NSSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4228</td>
<td>U17A</td>
<td>Air Conditioning & Refrigeration Technician</td>
<td>MM</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4340</td>
<td>U26A</td>
<td>Diesel Engine Repair Governor & Injector</td>
<td>EN</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4140</td>
<td>U08A</td>
<td>Gas Turbine Repair Technician</td>
<td>GS, GSE, GSM</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4145</td>
<td>U11A</td>
<td>Gas Turbine (Electrical) Repair Technician</td>
<td>GS, GSE</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4229</td>
<td>U18A</td>
<td>Heat Exchanger Repair Technician</td>
<td>DC, EN, GSM, MM</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4541</td>
<td>761A</td>
<td>Hydraulics Repair Technician</td>
<td>ABE, ABF, GS, GSE, MM</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4652</td>
<td>U40A</td>
<td>Inside Electrical Repair Technician</td>
<td>EM</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4406</td>
<td>U33A</td>
<td>Inside Machinist</td>
<td>MR</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4789</td>
<td>V82B</td>
<td>Interior Communications Repair Technician</td>
<td>IC, EM, ET</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4651</td>
<td>U39A</td>
<td>Outside Electrical Repair Technician</td>
<td>EM, GS, GSE</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4542</td>
<td>U34A</td>
<td>Outside Machinist</td>
<td>GS, GSM, MM</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4952</td>
<td>U52A</td>
<td>Pipefitter</td>
<td>HT</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4227</td>
<td>736B</td>
<td>Pump Repair Technician</td>
<td>ABE, ABF, DC, EN, MR, GSM, MM</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>121</td>
<td>797A</td>
<td>Rigger / Weight Tester</td>
<td>All Ratings</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95AA</td>
<td>719B</td>
<td>Shipboard Calibration Coordinator</td>
<td>EM, EN, ET, GS, GSE, IC, GSM, MM</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4911</td>
<td>U47A</td>
<td>Shipfitter</td>
<td>HT</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95AB</td>
<td>834A</td>
<td>Valve Repair Technician</td>
<td>All Ratings</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95AC</td>
<td>835A</td>
<td>Watertight Closure Maintenance Technician</td>
<td>All Ratings</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4957</td>
<td>U54A</td>
<td>General Shipboard Welder / Brazier</td>
<td>HT</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NAMTS News

NAMTS Training is Available at these Facilities

West Coast Afloat
- USS Nimitz (CVN 68)
- USS Carl Vinson (CVN 70)
- USS Theodore Roosevelt (CVN 71)
- USS John C. Stennis (CVN 74)
- USS Wasp (LHD 1)
- USS Essex (LHD 2)
- USS Boxer (LHD 4)
- USS America (LHA 6)

East Coast Afloat
- USS Dwight D. Eisenhower (CVN 69)
- USS Abraham Lincoln (CVN 72)
- USS George Washington (CVN 73)
- USS John C. Stennis (CVN 74)
- USS Harry S. Truman (CVN 75)
- USS George H. W. Bush (CVN 77)
- USS Gerald R. Ford (CVN 78)
- USS Kearsarge (LHD 3)
- USS Bataan (LHD 5)
- USS Iwo Jima (LHD 7)
- USS Carter Hall (LSD 50)

Naval Submarine Support Facility New London (NSSF)
- Mid-Atlantic Regional Maintenance Center (MARMC)
- Norfolk Naval Shipyard (NNSY)
- Southeast Regional Maintenance Center (SERMC)

Southwest Regional Maintenance Center (SWRMC)
- Portsmouth Naval Shipyard Detachment San Diego (PNS DET SD)

Pearl Harbor Naval Shipyard & Intermediate Maintenance Facility (PHNSY & IMF Hawaii) (HRMC)

Puget Sound Naval Shipyard and Intermediate Maintenance Facility Detachment (PSNS & IMF DET Everett) (NWRMC)
- Trident Refit Facility (TRF), Bangor

Trident Refit Facility (TRF), Bangor

Naval Base Guam
- USS Emory S. Land (AS 39)
- USS Frank Cable (AS 40)
- Emergent Repair Facility (ERF)

NAMTS Training is Available at these Facilities

NAMTS News
To learn more about the NAMTS and how you or your Sailors can get involved, please contact your nearest Regional NAMTS Coordinator (RNC), Afloat NAMTS Coordinator (ANC) or CNRMC by using the following information.

<table>
<thead>
<tr>
<th>Position</th>
<th>Contact Information</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNRMC - Code 900 Director, I-Level Production</td>
<td>Daniel.Spagone@navy.mil</td>
<td>(757) 400-0090</td>
</tr>
<tr>
<td>CNRMC - Code 930 NAMTS Program Manager</td>
<td>Gerald.Schrage@navy.mil</td>
<td>(757) 400-2103</td>
</tr>
<tr>
<td>CNRMC - Code 931 Assistant NAMTS Program Manager</td>
<td>Timothy.A.jones1@navy.mil</td>
<td>(757) 400-2467</td>
</tr>
<tr>
<td>CNRMC - Code 920 I-Level Maintenance & Production</td>
<td>Gary.Evans1@navy.mil</td>
<td>(757) 400-2127</td>
</tr>
<tr>
<td>CNRMC - Code 920 I-Level Programs/Knowledge Management</td>
<td>Scott.L.Buchanan1@navy.mil</td>
<td>(757) 400-2486</td>
</tr>
<tr>
<td>NAMTS Project Manager</td>
<td>JClarke@fti.net.com (Jill Clarke)</td>
<td>(757) 230-2222</td>
</tr>
<tr>
<td>Project/THMS Lead</td>
<td>MMallore@fti-net.com (Mike Mallore)</td>
<td>(757) 230-2218</td>
</tr>
<tr>
<td>NAMTS Lead</td>
<td>Jonathan.Russell@valkyrie.com</td>
<td>(757) 578-5448</td>
</tr>
<tr>
<td>NAMTS Field Lead</td>
<td>Arthur.Sisk.ctr@navy.mil</td>
<td>(757) 500-4630</td>
</tr>
<tr>
<td>Afloat NAMTS Coordinator - West Coast</td>
<td>Corey.Jackson@valkyrie.com</td>
<td>(619) 556-2244</td>
</tr>
<tr>
<td>Afloat NAMTS Coordinator - East Coast</td>
<td>Kevin.Bond.ctr@navy.mil</td>
<td>(757) 400-2469</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator - Trident Refit Facility, Bangor</td>
<td>Robert.Campbell@valkyrie.com</td>
<td>(360) 315-1800</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator - Mid-Atlantic Regional Maintenance Center</td>
<td>Andrew.R.Porter1.ctr@navy.mil</td>
<td>(757) 396-7771</td>
</tr>
<tr>
<td>MARMC ARNC Support</td>
<td>Christian.Boudouris@valkyrie.com</td>
<td>(757) 400-2620</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator - Norfolk Naval Shipyard</td>
<td>Felicia.Reid@valkyrie.com</td>
<td>(757) 400-2619</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator - Southeast Regional Maintenance Center (SERMC)</td>
<td>Osbert.TeekeaSingh.ctr@navy.mil</td>
<td>(904) 270-5126</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator - Puget Sound Naval Shipyard & Intermediate Maintenance Facility (Everett)</td>
<td>Gonzalo.Rivera@valkyrie.com</td>
<td>(425) 304-5507</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator - Southwest Regional Maintenance Center (SWRMC)</td>
<td>Douglas.Scholl.ctr@navy.mil</td>
<td>(619) 556-4844</td>
</tr>
<tr>
<td>Regional NAMTS Coordinator - Pearl Harbor Naval Shipyard & Intermediate Maintenance Facility</td>
<td>Edwin.Yamashiro.ctr@navy.mil</td>
<td>(808) 473-8000 x6357</td>
</tr>
<tr>
<td>Afloat NAMTS Coordinator - Guam</td>
<td>Jojo.Uy@valkyrie.com</td>
<td>(671) 343-6240</td>
</tr>
<tr>
<td>Fiber Optics Lead</td>
<td>Gabrielle.Chuchro@valkyrie.com</td>
<td>(757) 400-2129</td>
</tr>
<tr>
<td>Fiber Optics Instructor - SWRMC</td>
<td>Lawrence.Bruns@valkyrie.com</td>
<td>(619) 556-2259</td>
</tr>
<tr>
<td>NAMTS Production Equipment Specialist - Lead</td>
<td>Brian.Jolley.ctr@navy.mil</td>
<td>(757) 400-2208</td>
</tr>
<tr>
<td>Corrosion Control Specialist</td>
<td>Andrew.G.Vasquez.ctr@navy.mil</td>
<td>(757) 400-2466</td>
</tr>
<tr>
<td>NAMTS Public Affairs</td>
<td>Kat.Ciesielski@valkyrie.com</td>
<td>(757) 500-4713</td>
</tr>
</tbody>
</table>
To learn more about SORCAT, please contact a team member using the information below:

<table>
<thead>
<tr>
<th>Role</th>
<th>Contact Information</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SORCAT Project Manager</td>
<td>Charles.Lynch.ctr@navy.mil</td>
<td>(757) 578-5179</td>
</tr>
<tr>
<td>SORCAT Project Scheduler</td>
<td>Grabiela.Quinones@valkyrie.com</td>
<td>(757) 578-5341</td>
</tr>
<tr>
<td>SORCAT Team Lead</td>
<td>John.Zuhowski@valkyrie.com</td>
<td>(757) 578-5626</td>
</tr>
<tr>
<td>SORCAT Administration Lead</td>
<td>Candido.Ortiz@valkyrie.com</td>
<td>(757) 962-1893</td>
</tr>
<tr>
<td>SORCAT IPE Coordinator</td>
<td>James.Whitson@valkyrie.com</td>
<td>(757) 962-1775</td>
</tr>
<tr>
<td>SORCAT Lead Logician</td>
<td>Gary.Watson@valkyrie.com</td>
<td>(757) 548-5479</td>
</tr>
<tr>
<td>SORCAT Logistics Specialist</td>
<td>Chad.Woodward@valkyrie.com</td>
<td>(757) 578-5613</td>
</tr>
<tr>
<td>SORCAT Logistics Specialist</td>
<td>Sharon.Jones@valkyrie.com</td>
<td>(757) 578-5673</td>
</tr>
<tr>
<td>SORCAT Logistics Specialist</td>
<td>Nicholas.Hurtienne@valkyrie.com</td>
<td>(757) 578-5077</td>
</tr>
<tr>
<td>SORCAT East Technical Library</td>
<td>Michael.Gwinn@valkyrie.com</td>
<td>(757) 578-2113</td>
</tr>
<tr>
<td>SORCAT East Rigger Subject Matter Expert (SME)</td>
<td>Darrohn.Bickford@valkyrie.com</td>
<td>(757) 390-4759</td>
</tr>
<tr>
<td>SORCAT East Inside Machine & IPE SME</td>
<td>Richard.J.Smith5.ctr@navy.mil</td>
<td>(904) 270-5126 x.3571</td>
</tr>
<tr>
<td>SORCAT East Outside Machine SME</td>
<td>Michael.Dengate@valkyrie.com</td>
<td>(757) 500-4829</td>
</tr>
<tr>
<td>SORCAT East Electric Motor Repair SME</td>
<td>Russell.Lincoln@valkyrie.com</td>
<td>(757) 578-5139</td>
</tr>
<tr>
<td>SORCAT East Shipfitter SME</td>
<td>Alton.Kinchen@valkyrie.com</td>
<td>(757) 578-5109</td>
</tr>
<tr>
<td>SORCAT East Quality Assurance SME</td>
<td>Richard.Adams@valkyrie.com</td>
<td>(757) 222-5449</td>
</tr>
<tr>
<td>SORCAT West Team Lead</td>
<td>Jason.Wallis@valkyrie.com</td>
<td>(619) 556-2244</td>
</tr>
<tr>
<td>SORCAT West Technical Library</td>
<td>Ejiro.Awhotu@valkyrie.com</td>
<td>(619) 259-2925</td>
</tr>
<tr>
<td>SORCAT West Inside Machine & IPE SME</td>
<td>Darrell.Monroe@valkyrie.com</td>
<td>(619) 292-2240</td>
</tr>
<tr>
<td>SORCAT West Outside Machine SME</td>
<td>Ramil.Cabute@valkyrie.com</td>
<td>(619) 259-2966</td>
</tr>
<tr>
<td>SORCAT West Electric Motor Repair SME</td>
<td>Rizalito.Antonio@valkyrie.com</td>
<td>(619) 259-2790</td>
</tr>
<tr>
<td>SORCAT West Shipfitter SME</td>
<td>James.Armijo@valkyrie.com</td>
<td>(619) 259-2442</td>
</tr>
<tr>
<td>SORCAT West Quality Assurance SME</td>
<td>Jeffrey.Colley@valkyrie.com</td>
<td>(619) 292-2298</td>
</tr>
<tr>
<td>SORCAT West Administrator</td>
<td>Lisa.Noble@valkyrie.com</td>
<td>(619) 259-2278</td>
</tr>
<tr>
<td>SORCAT West Logistics Specialist</td>
<td>Kevin.Tomhave@valkyrie.com</td>
<td>(619) 259-2336</td>
</tr>
<tr>
<td>SORCAT Public Affairs</td>
<td>Kat.Ciesielski@valkyrie.com</td>
<td>(757) 500-4713</td>
</tr>
</tbody>
</table>